Fecha aprobación: 13/03/2021

FACULTAD DE CIENCIA Y TECNOLOGÍA ESCUELA DE INGENIERÍA MECÁNICA

1. Datos

Materia: AUTOTRÓNICA

Código: CTE0010

Paralelo: F

Periodo: Marzo-2021 a Julio-2021

Profesor: FERNANDEZ PALOMEQUE EFREN ESTEBAN

Correo efernandez@uazuay.edu.ec

electrónico:

Prerrequisitos:

Código: CTE0378 Materia: ELECTRONICA APLICADA II

Nivel: 10

Distribución de horas.

Docencia	Práctico	Autónomo:		Total horas
		Sistemas de tutorías	Autónomo	
4				4

2. Descripción y objetivos de la materia

Autotrónica inicia con el estudio de conceptos de electrónica aplicada al automóvil. Se continúa con la revisión de los diferentes componentes electrónicos, utilizados en los diferentes sistemas de control de un vehículo como son sensores y semiconductores, y varios equipos que se utilizan para el mantenimiento de dichos sistemas. Posteriormente se analizan sistemas modernos presentes en el automóvil y sus diferentes procedimientos para su diagnóstico. Al final se describe la programación de Pics para el desarrollo de un proyecto final. Es importante porque le permite a un estudiante de la carrera, identificar el funcionamiento y operación que tienen hoy en día los componentes y sistemas modernos del automóvil. Todos ellos complementados en su función gracias a la aplicación de la electrónica en la gestión, operación y en la precisión de resultados, así es como la contribución al perfil se ve reflejado en la posibilidad de que al final del estudio, el estudiante conciba al diagnóstico y reparación de estos sistemas como una buena alternativa de profesionalización en este

campo.
Las diferentes aplicaciones y diseño de circuitos para el aprendizaje de la autotrónica, se consideran muy importantes para aplicar a diferentes disciplinas y materias de la carrera como inyección electrónica y vehículos utilitarios, de tal manera existe un vínculo técnico y que generan varias soluciones a la vez.

3. Objetivos de Desarrollo Sostenible

4. Contenidos

1.	COMPONENTES ACTIVOS Y PASIVOS EN LA UCE
1.01.	Principios básicos de la Unidades de Control (2 horas)
1.02.	Componentes activos presentes en la UCE, mediciones (4 horas)
1.03.	Componentes pasivos presentes en la UCE, mediciones (4 horas)
1.04.	Capacitores cerámicos, poliester, superficiales y electrolíticos (4 horas)
1.05.	Diodos rectificadores y zéners, aplicación en la UCE (4 horas)
2.	TRANSISTORES PRESENTES EN LA UCE

2.01.	Transistores NPN y PNP, encapsulados y montaje. Unidad de Control (4 horas)
2.02.	Transistores Darlington y FETs. Transistores IGBT. Unidad de Control (4 horas)
2.03.	Circuito Fuente, Reguladores de tensión en la UCE. (4 horas)
2.04.	Mediciones de transistores en forma práctica (4 horas)
3.	ACTUADORES, UNIDADES DE CONTROL Y SISTEMAS DE DIAGNÓSTICO
3.01.	Base del funcionamiento de un trazador de curvas (4 horas)
3.02.	Análisis de curvas de tensión y corriente (4 horas)
3.03.	Modo XY de osciloscopio (2 horas)
3.04.	Gráficos de tensión y corriente a partir de las curvas graficadas en el osciloscopio (4 horas)
3.05.	Diseño de un trazador con osciloscopio (4 horas)
3.06.	Construcción del dispositivo (4 horas)
3.07.	Test de componentes electrónicos pasivos y activos (6 horas)
3.08.	Test de diodos. Interpretación de curvas. (2 horas)

5. Sistema de Evaluación

Resultado de aprendizaje de la carrera relacionados con la materia

Resultado de aprendizaje de la materia

Evidencias

ag. Analiza y diagnostica con equipos de tecnología avanzada y con herramientas especiales, el funcionamiento de motores de gasolina, diesel, sistemas del chasis, eléctricos y electrónicos.

-Describir los diferentes equipos de diagnostico de última generación para desarrollar un mantenimiento adecuado y en un tiempo reducido. -Prácticas de laboratorio ah. Diseña e implementa sistemas mecánicos, hidráulicos, neumáticos, eléctricos y electrónicos de control, ejecución

y seguridad en el campo automotriz.

-Utilizar nuevas técnicas de diseño electrónico mediante software clarifica y crea un ambiente virtual de desarrollo y solución de problemas.

-Informes -Prácticas de laboratorio

aj. Identifica nuevas e innovadoras reglas y procesos para el mantenimiento preventivo, correctivo y mejorativo de vehículos automotores, talleres y servicentros.

-Identificar las normas a seguir dentro de un mantenimiento correctivo aplicada a vehículos de última tecnología conociendo las proyecciones de de un servicio de post venta.

-Informes -Informes -Prácticas de laboratorio modernismo de un servicio de post venta.

Desglose de evaluación

Evidencia	Descripción	Contenidos sílabo a evaluar	Aporte	Calificación	Semana
Informes	Practicas de sistemas	ACTUADORES, UNIDADES DE CONTROL Y SISTEMAS DE DIAGNÓSTICO, COMPONENTES ACTIVOS Y PASIVOS EN LA UCE, TRANSISTORES PRESENTES EN LA UCE	APORTE DESEMPEÑO	5	Semana: 10 (17/05/21 al 21/05/21)
Informes	Informes	ACTUADORES, UNIDADES DE CONTROL Y SISTEMAS DE DIAGNÓSTICO, COMPONENTES ACTIVOS Y PASIVOS EN LA UCE, TRANSISTORES PRESENTES EN LA UCE	APORTE DESEMPEÑO	5	Semana: 11 (25/05/21 al 29/05/21)
Prácticas de laboratorio	Practica e informe	ACTUADORES, UNIDADES DE CONTROL Y SISTEMAS DE DIAGNÓSTICO	EXAMEN FINAL ASINCRÓNIC O	10	Semana: 19 (19/07/21 al 24/07/21)
Informes	Proyecto final	ACTUADORES, UNIDADES DE CONTROL Y SISTEMAS DE	examen final Sincrónico	10	Semana: 19 (19/07/21 al 24/07/21)
Prácticas de laboratorio	Practica e informe	ACTUADORES, UNIDADES DE CONTROL Y SISTEMAS DE DIAGNÓSTICO	SUPLETORIO ASINCRÓNIC O	10	Semana: 19 (19/07/21 al 24/07/21)
Informes	Proyecto final	ACTUADORES, UNIDADES DE CONTROL Y SISTEMAS DE DIAGNÓSTICO, COMPONENTES ACTIVOS Y PASIVOS EN LA UCE, TRANSISTORES PRESENTES EN LA	Supletorio Sincrónico	10	Semana: 19 (19/07/21 al 24/07/21)

E	videncia	Descripción	Contenidos sílabo a evaluar	Aporte	Calificación	Semana
			UCE			

Metodología

Se utilizará medios digitales para las clases virtuales. Para la comprobación de ejercicios y funcionamientos de sistemas se utilizarán simuladores virtuales que estarán a disposición de los estudiantes para realizar las diferentes prácticas

Criterios de Evaluación

Se avaluará las diferentes prácticas desarrolladas al igual que los informes generados

6. Referencias

Bibliografía base

Libros

Estado:

Libros				
Autor	Editorial	Título	Año	ISBN
Robert Boylestad	Pearson	Electrónica Teoría de Circuitos	2009	
Erik Zabler	Robert Bosch	Los Sensores en el Automóvil	2001	
Tom Denton	Taylor and Francis	Automobile Electrical and Electronics Systems	2012	978-84-938910-0-8
Web				
Autor	Título	Url		
Erik Schaltz	www.intech.com	https://www.intechopen.com/books/electric-vehicles-modelling-and-simulations/electrical-vehicle-design-and-modeling		
Software				
Autor	Título	Url		Versión
POWER SIMTECH	POWERSIM			
Bibliografía de ap Libros	роуо			
Web				
Software				
	Docente		Dire	ector/Junta
Fecha aprobació	n: 13/03/2021			

Aprobado