Fecha aprobación: 17/03/2022

FACULTAD DE CIENCIA Y TECNOLOGÍA ESCUELA DE INGENIERÍA AUTOMOTRIZ

1. Datos generales

Materia: DINÁMICA I

Código: IAU0401

Paralelo:

Periodo: Marzo-2022 a Agosto-2022

Profesor: CORDERO MORENO DANIEL GUILLERMO

Correo dacorderom@uazuay.edu.ec

electrónico

Prerrequisitos:

Código: CYT0011 Materia: FÍSICA II

Docencia	Práctico	Autór	Total horas	
		Sistemas de tutorías	Autónomo	
48	0	16	56	120

2. Descripción y objetivos de la materia

La materia de Dinámica propicia en el estudiante el desarrollo del pensamiento lógico y deductivo sobre el movimiento de los cuerpos , por lo que es muy importante para el análisis y determinación del funcionamiento de mecanismos, sienta bases para el estudio de la mecánica de los fluidos, y de la resistencia de los materiales. Está dirigida a consolidar los métodos y procedimientos para determinar los factores de movimiento y para la comprensión racional del entorno. Al finalizar la materia los estudiantes que hayan logrado estas competencias podrán generar procesos aplicables a los diversos contextos de la ingeniería.

3. Contenidos

01.	Introducción
01.01.	Presentación del curso (1 horas)
01.02.	Derivadas de funciones vectoriales (1 horas)
01.03.	Posición, velocidad y aceleración de una partícula (1 horas)
01.04.	Leyes de Newton, unidades (1 horas)
02.	Dinámica de una partícula: coordenadas rectangulares
02.01.	Cinemática, cinética, método Fuerza-masa-aceleración (1 horas)
02.02.	Dinámica del movimiento rectilíneo (1 horas)
02.03.	Movimiento curvilíneo (1 horas)
02.04.	Análisis del movimiento por el método de las áreas (2 horas)
03.	Dinámica de una partícula: coordenadas curvilíneas
03.01.	Coordenadas de trayectoria (normal-tangencial) (1 horas)
03.02.	Coordenadas polares y cilíndricas (1 horas)
03.03.	Ejercicios (1 horas)
04.	Principios de trabajo-energía y de impulso y cantidad de movimiento para una partícula
04.01.	Trabajo de una fuerza, Principio de trabajo y energía, fuerzas conservativas, conservación de la energía (2 horas)
04.02.	Potencia y eficiencia (1 horas)
04.03.	Principio de impulso y cantidad de movimiento (1 horas)
04.04.	Principio de impulso y cantidad de movimiento angular (2 horas)
05.	Dinámica de sistemas de partículas
05.01.	Movimiento relativo, Movimiento restringido, método FMA (3 horas)
05.02.	Principios de trabajo y energía, principios de impulso y cantidad de movimiento lineal y angular (3 horas)
05.03.	Impacto plástico, movimiento impulsivo, impacto elástico (3 horas)
6	Cinética plana de cuerpos rígidos:
06.01.	Movimiento angular de un plano, rotación respecto a un eje fijo (3 horas)

06.02.	Movimiento relativo de dos puntos en un cuerpo rígido, método de velocidad relativa, centro instantáneo para las
	velocidades (3 horas)
06.03.	Método de la aceleración relativa, derivadas absolutas y relativas de vectores, movimiento realtivo a un marco de referencia en rotación (3 horas)
06.04.	Momento de inercia de masa: cuerpos compuestos, cantidad de movimiento angular de un cuerpo rígido (3 horas)
06.05.	Cantidad de movimiento angular de un cuerpo rígido, ecuaciones de movimiento (3 horas)
06.06.	Método FMA: movimiento en un plano, ecuaciones diferenciales de movimiento (2 horas)
06.07.	Método de trabajo y energía: trabajo y potencia de un par, energía cinética de un cuerpo rígido, conservación de la energía mecánica (2 horas)
06.08.	Método impulso y cantidad de movimiento: Diagramas de la cantidad de movimiento, impacto del cuerpo rígido (2 horas)

4. Sistema de Evaluación

Resultado de aprendizaje de la carrera relacionados con la materia

Resultado	o de aprendizaje de la materia	Evidencias
a. Abstra	e conocimiento y lo aplica a procesos de ingeniería.	
	-Aplica los principios de la dinámica para ofrecer soluciones feasibles a probleas que se presentan en el quehacer profesional.	-Evaluación escrita -Proyectos -Resolución de
h Anlica	el razonamiento lógico - matemático para resolver problemas cotidianos y del ej	ejercicios, casos y otros ercicio profesional
D. Apiica	orrazonamiento logico inicionicio para reserval presionica concidentes y con ej	ordicio profesioriai.
	-Plantea y resuelve problemas de movimiento de partículas y sistemas de partículas	-Evaluación escrita -Proyectos -Resolución de ejercicios, casos y otros
c2. Interp	reta resultados de análisis para la toma de decisiones.	
	-Comprende la naturaleza de los fenómenos estudiados, interpreta correctamente los resultados, y los utiliza para el desarrollo de propuestas de diseño.	-Evaluación escrita -Proyectos -Resolución de ejercicios, casos y otros

Desglose de evaluación

Evidencia	Descripción	Contenidos sílabo a evaluar	Aporte	Calificación	Semana
Resolución de ejercicios, casos y otros	Prueba 1		APORTE	4	Semana: 3 (04/04/22 al 09/04/22)
Evaluación escrita	Examen 1		APORTE	6	Semana: 5 (18/04/22 al 23/04/22)
Resolución de ejercicios, casos y otros	Prueba 2		APORTE	4	Semana: 8 (09/05/22 al 14/05/22)
Evaluación escrita	Examen 2		APORTE	6	Semana: 10 (24/05/22 al 28/05/22)
Resolución de ejercicios, casos y otros	Prueba 3		APORTE	4	Semana: 13 (13/06/22 al 18/06/22)
Evaluación escrita	Examen 3		APORTE	6	Semana: 15 (27/06/22 al 02/07/22)
Evaluación escrita	Examen final		EXAMEN	12	Semana: 17-18 (10-07- 2022 al 23-07-2022)
Proyectos	Proyecto final		EXAMEN	8	Semana: 17-18 (10-07- 2022 al 23-07-2022)
Evaluación escrita	Examen supletorio		SUPLETORIO	20	Semana: 19 (al)

Metodología

Criterios de Evaluación

5. Referencias Bibliografía base

Libros

Autor	Editorial	Título	Año	ISBN
Johnston, R., & Beer,	F. P. Mc Graw Hill	Mecánica vectorial para ingenieros Dinámica	2010	
Web				
Software				
Bibliografía de apoy	70			
Libros				
Autor	Editorial	Título	Año	ISBN
Andrew Pytel Jaan Kiusalaas	Cengage Learning	Ingeniería Mecánica Dinámica	2012	978-607-481-871-0
FERDINAND P. BEER	Mc Graw-Hill	MECÁNICA VECTORIAL PARA INGENIEROS: DINÁMICA	2013	978-6-07-150923-9
HIBBELER	Pearson	INGENIERÍA MECÁNICA, DINÁMICA	2010	-
Web				
Software				
	Docente		_	Director/Junta
Fecha aprobación:	17/03/2022			

Fecha aprobación: 17/03/2022

Estado: Aprobado