Fecha aprobación: 11/09/2018

FACULTAD DE CIENCIA Y TECNOLOGÍA ESCUELA DE INGENIERÍA MECÁNICA

1. Datos

Materia: MECANICA COMPUTACIONAL

Código: CTE0377

Paralelo: F

Periodo: Septiembre-2018 a Febrero-2019

Profesor: ROCKWOOD IGLESIAS ROBERT ESTEBAN

Correo rrockwood@uazuay.edu.ec

electrónico:

Prerrequisitos:

Código: CTE0441 Materia: DISEÑO MECÁNICO II (PENSUM 200 IMA)

Nivel:

Distribución de horas.

Docencia	Práctico	Autónomo: 0		Total horas
		Sistemas de tutorías	Autónomo	
4				4

2. Descripción y objetivos de la materia

Al inicio del curso se estudian los métodos y las técnicas numéricas que se emplean para el análisis de elementos unidimensionales y bidimensionales, además se resolverán problemas de análisis estructural y se compararán los resultados obtenidos en el ordenador, contra los estimados a partir de la aplicación de las técnicas numéricas; luego se darán a conocer diferentes técnicas para la validación de los dominios computacionales, así como para la parametrización de un problema en cuestión.

A continuación se estudiarán diferentes herramientas que se utilizan para el análisis de problemas de interés en la industria automotriz, como lo son: Análisis modal, optimización, análisis de impacto, transferencia de calor y dinámica de fluidos.

Los programas computacionales de ingeniería asistida han demostrado su efectividad para la simulación del comportamiento de diferentes sistemas mecánicos, su utilización mejora significativamente la productividad, disminuye costos, permite evaluar y optimizar diseños sin necesidad de fabricar prototipos físicos; entre muchas otras ventajas. Los futuros ingenieros automotrices deberán desarrollar las destrezas necesarias para incorporar este tipo de herramientas al proceso del diseño de productos y así aportar al desarrollo de la industria automotriz nacional

El estudiante aplicará conceptos de las asignaturas que permiten el diseño de componentes mecánicos como lo son: estática, dinámica, resistencia de materiales, termodinámica, transferencia de calor, mecánica de fluidos, ingeniería de materiales, y diseño mecánico, además se utilizarán conceptos de resolución de ecuaciones y sistemas utilizando diferentes métodos numéricos; por otro lado los estudiantes modelarán componentes y sistemas mecánicos utilizando programas CAD.

3. Objetivos de Desarrollo Sostenible

4. Contenidos

1	Ingeniería asistida por computador.
1.1	Introducción, aplicaciones ingenieriles de los programas CAE (0 horas)
1.2	Elementos unidimensionales (0 horas)
1.2.1	Métodos matriciales para la resolución de sistemas formados con elementos unidimensionales en análisis estructural (3 horas)
2	Preproceso, proceso y posproceso CAE
2.1	Estructuración de dominios computacionales (0 horas)
2.1.1	Dominios estructurados y no estructurados (1 horas)
2.1.2	Tipos de elementos (0 horas)
2.1.3	Refinado, capas de contorno, control de tamaño y crecimiento (0 horas)
2.1.4	Controles de calidad de elementos (2 horas)
2.1.5	Validación de dominios computacionales (1 horas)
2.2	Proceso CAE, aplicaciones del método de elementos finitos (2 horas)
2.2.1	Condiciones de frontera y restricciones (1 horas)
2.2.2	Análisis estacionario y transitorio (2 horas)
2.2.3	Formulación implícita y explícita (2 horas)
2.2.4	Criterios de convergencia (2 horas)
2.3	Elementos bidimensionales (0 horas)
3	Aplicaciones de los programas CAE
3.1	Análisis estructural (7 horas)
3.2	Análisis estructural transitorio (4 horas)
3.3	Transferencia de calor (4 horas)
3.4	Análisis estructural y transferencia de calor (4 horas)
3.5	Impacto y deformación (4 horas)
3.6	Análisis modal (2 horas)
3.7	Optimización topográfica, topológica y de tamaño (4 horas)
3.8	Dinámica de fluidos computacional (4 horas)
3.8.1	fuerzas de arrastre y de sustentación (4 horas)
3.8.2	Dinámica de fluidos y transferencia de calor (4 horas)
3.8.3	Dinámica de fluidos y tranporte de especies (4 horas)

5. Sistema de Evaluación

Resultado de aprendizaje de la carrera relacionados con la materia Resultado de aprendizaje de la materia

ab. Analiza y/ o valida sistemas y subsistemas del vehículo a través de modelos matemáticos.

transferencia de calor, y dinámica de fluidos y transporte de especies.

	-Comprende las ventajas y limitaciones de las soluciones aproximadas que se	-Evaluación escrita		
	obtienen del análisis de los problemas a través de programas	-Prácticas de laboratorio		
	computacionales.	-Trabajos prácticos -		
	·	productos		
	-Plantea y resuelve analíticamente problemas de análisis estructural con	-Evaluación escrita		
	elementos unidimensionales y bidimensionales aplicando métodos matriciales	y -Prácticas de laboratorio		
	técnicas numéricas.	-Trabajos prácticos -		
		productos		
ah. Diseña e implementa sistemas mecánicos, hidráulicos, neumáticos, eléctricos y electrónicos de control, ejecución				
y seguridad	d <u>en el campo automotriz.</u>			
	-Resuelve problemas de análisis estructural, análisis modal, impacto y deformación, transferencia de calor, dinámica de fluidos, dinámica de fluidos	-Evaluación escrita y -Prácticas de laboratorio		

ai. Innova las características de funcionamiento y operación de distintos componentes y sistemas convencionales del automotor, a través de la aplicación del control y la regulación electrónica.

, a través de la aplicación del control y la regulación electrónica.	
-Optimiza componentes mecánicos utilizando técnicas numéricas y	-Evaluación escrita
computacionales.	-Prácticas de laboratorio
	-Trabajos prácticos -
	productos
-Simula el funcionamiento de sistemas mecánicos, estáticos y dinámicos y	-Evaluación escrita
estima las variables físicas de interés.	-Prácticas de laboratorio
	-Trabajos prácticos -
	productos

Evidencias

-Trabajos prácticos -

Desglose de evaluación

Evidencia	Descripción	Contenidos sílabo a evaluar	Aporte	Calificación	Semana
Evaluación escrita	Evaluación No.1	Ingeniería asistida por computador.	APORTE 1	5	Semana: 4 (09/10/18 al 13/10/18)
Trabajos prácticos - productos	Proyecto 1	Ingeniería asistida por computador.	APORTE 1	3	Semana: 5 (15/10/18 al 20/10/18)
Evaluación escrita	Prueba No.2	Ingeniería asistida por computador., Preproceso, proceso y posproceso CAE	APORTE 2	5	Semana: 9 (12/11/18 al 14/11/18)
Trabajos prácticos - productos	Proyecto No.2	Ingeniería asistida por computador., Preproceso, proceso y posproceso CAE	APORTE 2	4	Semana: 10 (19/11/18 al 24/11/18)
Evaluación escrita	Prueba No.3	Aplicaciones de los programas CAE, Preproceso, proceso y posproceso CAE	APORTE 3	5	Semana: 14 (17/12/18 al 22/12/18)
Prácticas de laboratorio	Promedio de lecciones y Deberes	Aplicaciones de los programas CAE, Ingeniería asistida por computador., Preproceso, proceso y posproceso CAE	APORTE 3	3	Semana: 15 (al)
Trabajos prácticos - productos	Proyecto No.3	Aplicaciones de los programas CAE	APORTE 3	5	Semana: 15 (al)
Trabajos prácticos - productos	Examen final - Proyecto Final	Aplicaciones de los programas CAE, Ingeniería asistida por computador., Preproceso, proceso y posproceso CAE	EXAMEN	20	Semana: 19-20 (20-01- 2019 al 26-01-2019)
Evaluación escrita	Examen Supletorio - Escrito	Aplicaciones de los programas CAE, Ingeniería asistida por computador., Preproceso, proceso y posproceso CAE	SUPLETORIO	20	Semana: 21 (al)

Metodología

La presentación de los contenidos la realizará el profesor a través de exposiciones verbales con el acompañamiento de los medios de comunicación que posee la universidad; las temáticas serán reforzadas con ejemplos y ejercicios de aplicación, además se realizarán prácticas que permitan la aplicación de los conocimientos. Los estudiantes reforzarán los principios adquiridos en clase realizando ejercicios de aplicación - investigación, a manera de trabajos y deberes

Criterios de Evaluación

Para las evaluaciones escritas se considerarán en cuenta en igual proporción la correcta aplicación de las nociones teóricas, el proceso de resolución de los ejercicios y la respuesta. Las preguntas teóricas se evalúan de acuerdo al grado de pertinencia en relación a los contenidos abordados durante las clases, o en su defecto con relación a los presentados en los textos guias, se evaluará: la pertinencia de las respueresas, criterio lógico deductivo, y la aplicación práctica de las nociones teóricas. Los trabajos prácticos se calificarán de acuerdo al porcentaje de cumplimiento de los objetivos planteados.

6. Referencias

Bibliografía base

Libros

Autor	Editorial	Título	Año	ISBN
SHIGLEY JOSEPH	McGraw Hill	DISEÑO DE INGENIERÍA MECÁNICA	2008	NO INDICA

Web

Software

Bibliografía de apoyo

Libros

Web

Software

Docente	Director/Junta
Fecha aprobación: 11/09/2018	

Estado: Aprobado