Fecha aprobación: 15/09/2020

FACULTAD DE CIENCIA Y TECNOLOGÍA ESCUELA DE INGENIERÍA AUTOMOTRIZ

1. Datos

Materia: RESISTENCIA DE MATERIALES I

Código: IAU0502

Paralelo: F, G

Periodo: Septiembre-2020 a Febrero-2021
Profesor: VITERI CERDA HERNÁN ARTURO

Correo hviteri@uazuay.edu.ec

electrónico:

Prerrequisitos:

Código: IAU0403 Materia: INGENIERÍA DE MATERIALES

Nivel: 5

Distribución de horas.

Docencia	Práctico	Autónomo: 96		Total horas
		Sistemas de tutorías	Autónomo	
64	0	0	96	160

2. Descripción y objetivos de la materia

A través de la asignatura resistencia de materiales I el alumno analiza los esfuerzos simples y deformaciones que experimenta un cuerpo sólido sujetos a solicitaciones externas, conocer las principales propiedades mecánicas de los materiales que se utilizan en la ingeniería permitiéndole dimensionar y/o seleccionar el material de un elemento mecánico de una manera segura y económica.

La asignatura de resistencia de materiales I, dentro del currículo de Ingeniería Automotriz está conformado por asignaturas de apoyo como son Estática, Dinámica, Resistencia de materiales II y materias de profesionalización como son Teoría de Mecanismos, Diseño de partes de máquinas, diseño de máquinas, e ingeniería asistida por computador, los conocimientos que el alumno adquiera le permitirá desarrollarse de una manera adecuada en el campo del mantenimiento y diseño de componentes mecánicos automotrices

El dominio y aplicación de los conocimientos adquiridos en la asignatura de resistencia de materiales I le permitirá al estudiante iniciarse en el campo de la mecánica de sólidos que es la base

para el diseño y selección de los principales elementos mecánicos que constituyen un vehículo.

3. Objetivos de Desarrollo Sostenible

4. Contenidos

1.	Esfuerzos simple
1.01.	Introducción (2 horas)
1.02.	Análisis de fuerzas internas (2 horas)
1.03.	Carga axial; esfuerzo normal (4 horas)
1.04.	Esfuerzo cortante medio (4 horas)
1.05.	Carga axial; esfuerzo de aplastamiento (2 horas)
2.	Deformación simple
2.01.	Diagrama Esfuerzo ¿ Deformación (4 horas)

2.02.	Ley de Hooke: Deformación axial (4 horas)			
2.03.	Esfuerzos permisibles: Factor de seguridad (2 horas)			
2.04.	Relación de Poisson (4 horas)			
2.05.	Elementos estaticamente indeterminados (4 horas)			
2.06.	Esfuerzos de origen térmico (2 horas)			
3.	Torsión			
3.01.	Introducción (1 horas)			
3.02.	Deducción de la fórmula del esfuerzo cortante (1 horas)			
3.03.	Esfuerzo torsionante en ejes (4 horas)			
3.04.	Diagrama de momento torsor (4 horas)			
3.05.	Acoplamiento por medio de bridas (2 horas)			
4.	Variación del esfuerzo			
4.01.	Introducción (2 horas)			
4.02.	Esfuerzo en un punto (2 horas)			
4.03.	Variación del esfuerzo: Cálculo analítico (2 horas)			
4.04.	Variación del esfuerzo: Círculo de Mohr (2 horas)			
5.	Flexión			
5.01.	Método de secciones (2 horas)			
5.02.	Fuerza cortante (2 horas)			
5.03.	Momento flector en vigas (2 horas)			
5.04.	Diagrama de Fuerza Cortante (2 horas)			
5.05.	Diagrama de Momento Flector (2 horas)			

5. Sistema de Evaluación

Resultado de aprendizaje de la carrera relacionados con la materia

Resultado de aprendizaje de la materia

Evidencias

. Desarrolla metodologías innovadoras para el diseño, manufactura y producción de partes, piezas y componentes automotrices.

-Interpreta los diferentes esfuerzos y deformaciones de cuerpos sólidos -Evaluación escrita pertenecientes a un vehículo e instalaciones relativas a la industria automotriz -Informes -Proyectos

b. Aplica el razonamiento lógico - matemático para resolver problemas cotidianos y del ejercicio profesional.

-Dimensiona elementos y dispositivos en función de las solicitaciones -Evaluación escrita mecánicas y propiedades de los materiales con factores adecuados factores -Informes -Proyectos

e. Diseña componentes mecánicos, en base al análisis de las condiciones de su operación, así como el pronóstico de su resistencia.

--Selecciona los materiales adecuados, en función de las solicitaciones físicas y -Evaluación escrita químicas -Informes -Proyectos

Desglose de evaluación

Evidencia	Descripción	Contenidos sílabo a evaluar	Aporte	Calificación	Semana
		evaloai			
Evaluación escrita	Prueba escrita	Deformación simple, Esfuerzos simple	APORTE DESEMPEÑO	5	Semana: 6 (26/10/20 al 31/10/20)
Evaluación escrita	Prueba escrita	Torsión, Variación del esfuerzo	APORTE DESEMPEÑO	5	Semana: 11 (30/11/20 al 05/12/20)
Informes	Presentación de proyecto		EXAMEN FINAL ASINCRÓNIC O	10	Semana: 19 (25/01/21 al 30/01/21)
Evaluación escrita	Prueba escrita	Deformación simple, Esfuerzos simple, Flexión, Torsión, Variación del esfuerzo	EXAMEN FINAL SINCRÓNICO	10	Semana: 19 (25/01/21 al 30/01/21)
Informes	Presentación de proyecto	Deformación simple, Esfuerzos simple, Flexión, Torsión, Variación del esfuerzo	SUPLETORIO ASINCRÓNIC O	10	Semana: 19 (25/01/21 al 30/01/21)
Evaluación escrita	Prueba escrita	Deformación simple, Esfuerzos simple, Flexión, Torsión, Variación del esfuerzo	SUPLETORIO SINCRÓNICO	10	Semana: 19 (25/01/21 al 30/01/21)

Metodología

Criterios de Evaluación

Aprobado

6. Referencias

Bibliografía base

Libros

Estado:

Autor	Editorial	Título	Año	ISBN
Beer, F. P., Johnston, E. R., DeWolf, J. T., & Mazurek, D. F.	Mc Graw Hill.	Mecánica de materiales	2017	
Web				
Software				
Bibliografía de apoyo Libros				
Web				
Software				
Doce	ente		Director/	Junta
Fecha aprobación: 15	5/09/2020			