Fecha aprobación: 15/09/2020

FACULTAD DE CIENCIA Y TECNOLOGÍA ESCUELA DE INGENIERÍA MECÁNICA

1. Datos

Materia: ELECTRONICA APLICADA II

Código: CTE0378

Paralelo: F, G

Periodo: Septiembre-2020 a Febrero-2021

Profesor: FERNANDEZ PALOMEQUE EFREN ESTEBAN

Correo efernandez@uazuay.edu.ec

electrónico:

Prerrequisitos:

Ninguno

Nivel:

Distribución de horas.

Docencia	Práctico	Autór	Total horas	
		Sistemas de tutorías	Autónomo	
4				4

2. Descripción y objetivos de la materia

La materia de electrónica aplicada II permite conocer los diferentes sistemas electrónicos presentes en el automóvil.

La materia se centra en el estudio de 4 áreas muy importantes y esenciales para el accionamiento y control de los diferentes sistemas de automoción.

La primera parte se analiza y estudia los diferentes familias de computadoras automotrices y sus aplicaciones en sistemas de automoción, su funcionamiento, elementos semiconductores, estrategias de control, estrategias de modificación de parámetros.

En la segunda parte se analizan los sistemas de seguridad activa y pasiva (EPS, ABS, Start-Stop, SRS, IPA Conducción Autónoma), se estudian el funcionamiento y estrategias de control que utilizan los sistemas, analizar los diferentes PIDs (parámetros de identificación de datos) para comprobar el funcionamiento.

En la tercera parte se estudian los diferentes protocolos de comunicación y sistemas multiplexados normas SAE-Euro-OBD para el intercambio de datos, se analizan los protocolos CAN-TTCAN-FLEXRAY-MOST, fallos de bus de datos.

En el cuarto punto se plantea analizar la electrónica implementada en sistemas Diesel-Truck, módulos de control de bombas de alta presión y control de electroválvulas piezoeléctricas (Sistemas Common Rail), sensores piezoeléctricos, sistemas de regeneración de gases y sus estrategias de control, sistemas DPF por control electrónico.

La materia de Electrónica Aplicada II comprende el estudio, análisis y reparación de los sistemas de seguridad pasiva que tienen los vehículos en la actualidad, analiza los tipos de elementos, como son: sensores, actuadores y unidades de control.

Está asignatura relaciona los niveles electrónica I, electrónica II y electrónica aplicada I, vistos en los ciclos anteriores, y constituye un eje fundamental para la formación profesional de un estudiante de Ingeniería Mecánica Automotriz, en cuanto a sistemas de seguridad activa y pasiva de los vehículos modernos se refiere.

3. Objetivos de Desarrollo Sostenible

4. Contenidos

01.	Sistemas de Unidades de Control	
01.01.	Familias de unidades y Aplicación es sistemas. (2 horas)	
01.02.	Señales de entrada y salida (2 horas)	
01.03.	Bloques de funcionalidad (2 horas)	
01.04.	Prácticas de medición y reconocimiento (2 horas)	
01.05	Prácticas en laboratorio (4 horas)	
02.	Sistemas de Seguridad Pasiva	
02.01.	Sistema de dirección electrónica asistida (2 horas)	
02.02.	Sistema de ABS (2 horas)	
02.03.	Sistema de bolsas de aire (2 horas)	
02.04.	Sistemas de IPA, Vehículos autónomos (2 horas)	
02.05.	Sistema Start stop (2 horas)	
02.06.	Manejo de Equipos y lecturas de PIDs (2 horas)	
02.07	Practicas sobre vehículos (4 horas)	
02.08.	Prácticas sobre vehículos (2 horas)	
03.	Protocolos de Comunicación	
03.01.	Normas SAE Y EOBDII (2 horas)	
03.02.	Protocolo CAN y sus derivaciones (2 horas)	
03.03.	Redes de comunicación (2 horas)	
03.04.	Flexray y Most (2 horas)	
03.05.	Análisis de datos (2 horas)	
03.07.	Prácticas de adquisición (2 horas)	
03.08.	Prácticas sobre automóviles (2 horas)	
03.09.	EVALUACIÓN DE LA TEMÁTICA ESTUDIADA (2 horas)	
04.	Sistemas Diésel Truck	
04.01.	Módulos de Control (2 horas)	
04.02.	Bombas de alta presión (2 horas)	
04.03.	Actuadores Piezoeléctricos (2 horas)	
04.04.	Sensores piezoeléctricos (2 horas)	
04.05.	Estrategias de control (2 horas)	
04.06.	Sistemas DFP (2 horas)	
04.07.	Prácticas en simulación (2 horas)	
04.08.	Prácticas en el taller (2 horas)	
04.09.	Evaluación temática (2 horas)	

5. Sistema de Evaluación

Resultado de aprendizaje de la carrera relacionados con la materia

Resultado de aprendizaje de la materia

Evidencias

ag. Analiza y diagnostica con equipos de tecnología avanzada y con herramientas especiales, el funcionamiento de motores de gasolina, diesel, sistemas del chasis, eléctricos y electrónicos.

-Analiza los parámetros de datos PIDs para validar el correcto funcionamiento	-Informes
de los sistemas electrónicos de los vehículos	-Proyectos
	-Reactivos
-Ejecuta las verificaciones de los diferentes componentes electrónicos y su	-Informes
funcionalidad.	-Proyectos
	-Reactivos
-Realiza pruebas de verificación y diagnóstico del funcionamiento de los	-Informes
sistemas y la comprobación de sensores, actuadores utilizando multímetros,	-Proyectos
osciloscopios y escáner	-Reactivos

ai. Innova las características de funcionamiento y operación de distintos componentes y sistemas convencionales del automotor, a través de la aplicación del control y la regulación electrónica.

-Diagnostica averías en los componentes electrónicos combustible y determina	-Informes
de los diferentes sistemas	-Proyectos
	-Reactivos
-Establece con exactitud las características de y funcionamiento de los	-Informes

Evidencias

componentes de los sistemas electrónicos presentes en el vehículo, mediante -Proyectos pruebas. -Reactivos

Desglose de evaluación

Evidencia	Descripción	Contenidos sílabo a evaluar	Aporte	Calificación	Semana
Informes	Informes	Sistemas de Seguridad Pasiva, Sistemas de Unidades de Control	APORTE DESEMPEÑO	5	Semana: 10 (23/11/20 al 28/11/20)
Informes	Informes	Protocolos de Comunicación, Sistemas Diésel Truck	APORTE DESEMPEÑO	5	Semana: 20 (01/02/21 al 06/02/21)
Proyectos	Proyecto Final	Protocolos de Comunicación, Sistemas Diésel Truck, Sistemas de Seguridad Pasiva, Sistemas de Unidades de Control	examen final asincrónic o	10	Semana: 19-20 (25-01- 2021 al 30-01-2021)
Reactivos	Reactivos	Protocolos de Comunicación, Sistemas Diésel Truck, Sistemas de Seguridad Pasiva, Sistemas de Unidades de Control	EXAMEN FINAL SINCRÓNICO	10	Semana: 19 (25/01/21 al 30/01/21)
Proyectos	Proyecto Final	Protocolos de Comunicación, Sistemas Diésel Truck, Sistemas de Seguridad Pasiva, Sistemas de Unidades de Control	SUPLETORIO ASINCRÓNIC O	10	Semana: 19-20 (25-01- 2021 al 30-01-2021)
Reactivos	Reactivos	Protocolos de Comunicación, Sistemas Diésel Truck, Sistemas de Seguridad Pasiva, Sistemas de Unidades de Control	SUPLETORIO SINCRÓNICO	10	Semana: 19 (25/01/21 al 30/01/21)

Metodología

Se implementa el método analítico descriptivo para el desarrollo de las clases utilizando recursos digitales para llegar a la atención de los estudiantes en una modalidad virtual. Además es necesario el método experimental para el análisis de diferentes sistemas en laboratorio

Criterios de Evaluación

Informes/prácticas:

En los informes se evaluará la estructura, presentación, contenidos, aportes, conclusiones y recomendaciones del estudiante. En las prácticas se evaluará la aplicación de los conceptos teóricos, procesos de diagnóstico y destrezas sobre el vehículo.

6. Referencias

Bibliografía base

Libros

Autor Editorial		Título	Año ISBN		
BOLTON, WILLIAM	Alfaomega Grupo Editor	MECATRÓNICA: SISTEMAS DE CONTROL ELECTRÓNICO EN LA INGENIERÍA MECÁNICA Y ELÉCTRICA	2010	NO INDICA	
James D. Halderman	Prentice Hall	Diagnosis and troubleshooting of automotive electrical, electronic, and computer systems	2012	978-0-13-255155-7	
Tom Denton		Automobile Electrical and Electronics Systems	2012	78-0-08-096942-8	
Oscar Barrera		Sistemas de Seguridad y Confortabilidad	2012	978-84-9732-828-9	

Autor	Editorial	Título		Año	ISBN
Joan Antonio R	os Marín	Sistemas Eléc confortabilio	ctricos y de Seguridad y lad	2011	978-84-9732-890-6
Web					
Autor	Título		Url		
DENTON	GALE. Cengage Learning		http://www.engineeri derstanding-Automot	ng108.com/Da ive-	ta/Engineering/Automobile/Un
Software					
Autor	Título	Url			Versión
DIMSPORT	TRASDATA				2.9
live wire	Live wire				1.2
Bibliografía de Libros	e apoyo				
Web					
Software					
_	 Docente			Dire	ector/Junta
Fecha aprobo	ación: 15/09/2020			5110	. 5. 5. , 5 5 11 13

Aprobado

Estado: