Fecha aprobación: 18/09/2020

FACULTAD DE CIENCIA Y TECNOLOGÍA ESCUELA DE INGENIERÍA ELECTRÓNICA

1. Datos

Materia: ANÁLISIS DE CIRCUITOS ELÉCTRICOS

Código: ELE0301

Paralelo: D

Periodo :Septiembre-2020 a Febrero-2021Profesor:CABRERA FLOR ANDRES PATRICIO

Correo apcabrera@uazuay.edu.ec

electrónico:

Prerrequisitos:

Código: CYT0006 Materia: ANÁLISIS MATEMÁTICO II

Código: CYT0009 Materia: ÁLGEBRA LINEAL

Nivel: 3

Distribución de horas.

Docencia	Práctico	Autónomo: 56		Total horas
		Sistemas de tutorías	Autónomo	
48	16	0	56	120

2. Descripción y objetivos de la materia

Análisis de Circuitos inicia con las bases de la electricidad como es la carga eléctrica, ley de Coulomb, campo eléctrico, potencial, corriente eléctrica, ley de Ohm, potencia eléctrica, conceptos sumamente necesarios para comprender los circuitos eléctricos de corriente continua y corriente alterna. Dentro de los circuitos de corriente continua se estudia la leyes de Kirchhoff, reducción de circuitos serie paralelo, teoremas de circuitos y sus fuentes. Posteriormente se sigue con el estudio de los circuitos de corriente alterna en donde se trata las ondas, la impedancia compleja y el ángulo de fase, reducción de circuitos serie paralelo, potencia eléctrica y factor de potencia, así como los teoremas de circuitos de corriente alterna. La materia concluye con el estudio de sistemas polifásicos, dando especial atención a los sistemas trifásicos

Está asignatura relaciona los niveles de Física vistos en los ciclos anteriores con otras materias de apoyo y profesionalización que se dictan en niveles superiores tales como: Máquinas Eléctricas, Electromagnetismo, que constituyen la base para la formación profesional de un estudiante de Ingeniería Electrónica.

Análisis de Circuitos pertenece al eje de formación de Materias Profesionales que las carreras de ingeniería eléctrica y electrónica toman como

parte de su formación científica y técnica, es una cátedra que da los principios y leyes que fundamentan el estudio de la electricidad, mediante su enunciado, demostración matemática y el desarrollo de ejercicios aplicados y problemas. La asignatura es básica para comprender el comportamiento de los elementos activos y pasivos que conforman los circuitos eléctricos, las magnitudes y unidades de medida de las diferentes variables, así como las formas de resolución de esos circuitos y la obtención de sus parámetros, requisitos fundamentales para su formación profesional en el campo de la Ingeniería Electrónica.

3. Objetivos de Desarrollo Sostenible

4. Contenidos

01.	Introducción				
01.01.	Circuitos Eléctricos (1 horas)				
01.02.	Corriente y voltaje (2 horas)				
01.03.	Fuentes de voltaje y corriente (1 horas)				
01.04.	Ley de Ohm: resistencia eléctrica (2 horas)				
01.05.	Energía y potencia eléctrica (2 horas)				
02.	Leyes de Corriente y Voltaje				
02.01.	Nodos, lazos y ramas (2 horas)				
02.02.	Ley de corriente de Kirchhoff (3 horas)				
02.03.	Ley de voltaje de Kirchhoff (3 horas)				
02.04.	Conexión de fuentes en serie y paralelo (2 horas)				
02.05.	Resistores en serie y paralelo (2 horas)				
02.06.	Medición de corriente y voltaje (2 horas)				
02.07.	Evaluación (2 horas)				
03.	Análisis de estado senoidal permanente				
03.01.	Valores medio y eficaz (2 horas)				
03.02.	Impedancia y ángulo de fase (2 horas)				
03.03.	Fasores (2 horas)				
03.04.	Capacitores e inductores (2 horas)				
03.05.	Potencia y factor de potencia (2 horas)				
03.06.	Circuitos en estrella y delta (2 horas)				
03.07.	Evaluación (2 horas)				
04.	Técnicas de Análisis de Circuitos				
04.01.	Divisores de voltaje y corriente (2 horas)				
04.02.	Análisis de nodos (4 horas)				
04.03.	Análisis de mallas (4 horas)				
04.04.	Linealidad y superposición (4 horas)				
04.05.	Teoremas de Thevenin y Norton (4 horas)				
04.06.	Evaluación (2 horas)				
05.	Sistemas polifásicos				
05.01.	Sistemas trifásicos (2 horas)				
05.02.	Tensiones en sistemas trifásicos (4 horas)				

5. Sistema de Evaluación

Resultado de aprendizaje de la carrera relacionados con la materia

Resultado de aprendizaje de la materia

Evidencias

. Conoce los fundamentos teóricos, tecnológicos, prácticos y científicos para desarrollo de proyectos electrónicos en las áreas de control, telecomunicaciones, energía renovable y biomédica.

s control, relection icaciones, energia renovable y biornealca.	
-Analiza y aplica los principios físicos y leyes que fundamentan el estudio de la electricidad.	-Evaluación escrita -Reactivos -Resolución de ejercicios, casos y otros
-Aplica correctamente teoremas y principios para la solución de problemas.	-Evaluación escrita -Reactivos -Resolución de ejercicios, casos y otros
erramientas informáticas de uso general y específico dentro de la Ingenieria Elec	ctronica.
-Utiliza herramientas tecnológicas adecuadas para el desarrollo de las aplicaciones de circuitos eléctricos.	-Evaluación escrita -Reactivos -Resolución de ejercicios, casos y otros
	 Analiza y aplica los principios físicos y leyes que fundamentan el estudio de la electricidad. Aplica correctamente teoremas y principios para la solución de problemas. Erramientas informáticas de uso general y específico dentro de la Ingeniería Electricia. Utiliza herramientas tecnológicas adecuadas para el desarrollo de las

Desglose de evaluación

Evidencia	Descripción	Contenidos sílabo a evaluar	Aporte	Calificación	Semana
Evaluación escrita	Ejercicios y tareas	Análisis de estado senoidal permanente, Introducción, Leyes de Corriente y Voltaje, Sistemas polifásicos, Técnicas de Análisis de Circuitos	APORTE DESEMPEÑO	10	Semana: 16 (04/01/21 al 09/01/21)
Evaluación escrita	Examen Final	Análisis de estado senoidal permanente, Introducción, Leyes de Corriente y Voltaje, Sistemas polifásicos, Técnicas de Análisis de Circuitos	EXAMEN FINAL ASINCRÓNIC O	10	Semana: 19-20 (25-01- 2021 al 30-01-2021)
Evaluación escrita	Examen Final	Análisis de estado senoidal permanente, Introducción, Leyes de Corriente y Voltaje, Sistemas polifásicos, Técnicas de Análisis de Circuitos	EXAMEN FINAL SINCRÓNICO	10	Semana: 19 (25/01/21 al 30/01/21)
Evaluación escrita	Examen Final	Análisis de estado senoidal permanente, Introducción, Leyes de Corriente y Voltaje, Sistemas polifásicos, Técnicas de Análisis de Circuitos	SUPLETORIO ASINCRÓNIC O	10	Semana: 19-20 (25-01- 2021 al 30-01-2021)
Evaluación escrita	Examen Final	Análisis de estado senoidal permanente, Introducción, Leyes de Corriente y Voltaje, Sistemas polifásicos, Técnicas de Análisis de Circuitos	SUPLETORIO SINCRÓNICO	10	Semana: 19 (25/01/21 al 30/01/21)

Metodología

Criterios de Evaluación

6. Referencias

Bibliografía base

Libros

Autor	Editorial	Título	Año	ISBN
HAYT, WILLIAM H., JACK E. KEMMERLY, AND STEVEN M. DURBIN	McGraw-Hill	Análisis de circuitos en ingeniería	2012	978-607-15-0802-7

Software

Bibliografía de apoyo

Libros

Autor	Editorial	Título	Año	ISBN
James W. Nilsson, Susan	PEARSON	Electric Circuits	2015	0133760030
A. Riedel				
BOYLESTAD	Pearson Prentice Hall	INTRODUCCIÓN AL ANÁLISIS DE CIRCUITOS	2011	978-607-32-0585-6
Web				

Software

Docente		Director/Junta

Fecha aprobación: 18/09/2020

Estado: Aprobado