Fecha aprobación: 12/03/2020

FACULTAD DE CIENCIA Y TECNOLOGÍA ESCUELA DE INGENIERÍA AUTOMOTRIZ

1. Datos

Código:

Materia: DINÁMICA I

Paralelo: F

Periodo: Marzo-2020 a Agosto-2020

IAU0401

Profesor: CORDERO MORENO DANIEL GUILLERMO

Correo dacorderom@uazuay.edu.ec

electrónico:

Prerrequisitos:

Código: CYT0011 Materia: FÍSICA II

Nivel: 4

Distribución de horas.

Docencia	Práctico	Autór	Total horas	
		Sistemas de tutorías	Autónomo	
48	0	16	56	120

2. Descripción y objetivos de la materia

La materia de Dinámica propicia en el estudiante el desarrollo del pensamiento lógico y deductivo sobre el movimiento de los cuerpos , por lo que es muy importante para el análisis y determinación del funcionamiento de mecanismos, sienta bases para el estudio de la mecánica de los fluidos, y de la resistencia de los materiales. Está dirigida a consolidar los métodos y procedimientos para determinar los factores de movimiento y para la comprensión racional del entorno. Al finalizar la materia los estudiantes que hayan logrado estas competencias podrán generar procesos aplicables a los diversos contextos de la ingeniería.

3. Objetivos de Desarrollo Sostenible

4. Contenidos

1.1	Cinética de partículas: Segunda ley de Newton
1.2	Introducción (1 horas)
1.3	Segunda ley de Newton (1 horas)
1.4	Cantidad de movimiento lineal de una partícula (1 horas)
1.5	Ecuaciones de movimiento (2 horas)
1.6	Equilibrio dinámico (4 horas)
1.7	Ley de gravitación universal (1 horas)
2	Cinética de partículas: Principio del Trabajo y la Energía
2.1	Introducción (1 horas)

2.2	Trabajo de una fuerza (1 horas)
2.3	Energía cinética de una partícula (1 horas)
2.4	Principio del trabajo y la energía (1 horas)
2.5	Aplicaciones del principio del trabajo y la energía (5 horas)
2.6	Potencia y eficacia (2 horas)
2.7	Energía potencial (1 horas)
2.8	Fuerzas conservativas (1 horas)
2.9	Principio de la conservación de la energía (5 horas)
3	Cinética de partículas: Principio del Impulso y la Cantidad de Movimiento
3.1	Introducción (1 horas)
3.2	Principio del impulso y la cantidad de movimiento (1 horas)
3.3	Movimiento impulsivo (4 horas)
4	Sistemas de partículas
4.1	Introdución (1 horas)
4.2	Aplicación de las leyes de Newton al movimiento de un sistema de partículas (3 horas)
4.3	Cantidad de movimiento lineal y angular de un sistema de partículas (2 horas)
4.4	Movimiento del centro de masa de un sistema de partículas (2 horas)
4.5	Cantidad de movimiento angular de un sistema de partículas alrededor de su centro de masa (2 horas)
4.6	Conservación de la cantidad de movimiento para sistemas de partículas (2 horas)
4.7	Principio del trabajo y la energía, conservación de la energía para un sistema de partículas (2 horas)

5. Sistema de Evaluación

Resultado de aprendizaje de la carrera relacionados con la materia Resultado de aprendizaje de la materia

a. Abstrae conocimiento y lo aplica a procesos de ingeniería.

Evidencias

-Aplica los principios de la dinámica para ofrecer soluciones feasibles a	-Evaluación escrita
probleas que se presentan en el quehacer profesional.	-Proyectos
	-Resolución de
	eiercicios casos v otros

b. Aplica el razonamiento lógico - matemático para resolver problemas cotidianos y del ejercicio profesional.

-Plantea y resuelve problemas de movimiento de partículas y sistemas de	-Evaluación escrita
partículas	-Proyectos
	-Resolución de
	ejercicios, casos y otros

c2. Interpreta resultados de análisis para la toma de decisiones.

-Comprende la naturaleza de los fenómenos estudiados, interpreta	-Evaluación escrita
correctamente los resultados, y los utiliza para el desarrollo de propuestas de	-Proyectos
diseño.	-Resolución de
	ejercicios casos y ot

Desglose de evaluación

Evidencia	Descripción	Contenidos sílabo a evaluar	Aporte	Calificación	Semana
Resolución de ejercicios, casos y otros	Prueba 1	Cinética de partículas: Segunda ley de Newton	APORTE	4	Semana: 3 (15/04/20 al 20/04/20)
Evaluación escrita	Examen 1	Cinética de partículas: Segunda ley de Newton	APORTE	6	Semana: 5 (29/04/20 al 04/05/20)
Resolución de ejercicios, casos y otros	Prueba 2	Cinética de partículas: Principio del Trabajo y la Energía	APORTE	4	Semana: 8 (20/05/20 al 25/05/20)
Evaluación escrita	Examen 2	Cinética de partículas: Principio del Trabajo y la Energía	APORTE	6	Semana: 10 (03/06/20 al 08/06/20)
Resolución de ejercicios, casos y otros	Prueba 3	Cinética de partículas: Principio del Impulso y la Cantidad de Movimiento	APORTE	4	Semana: 13 (24/06/20 al 29/06/20)
Evaluación escrita	Examen 3	Sistemas de partículas	APORTE	6	Semana: 16 (15/07/20 al 20/07/20)
Evaluación escrita	Examen final	Cinética de partículas: Principio del Impulso y la	EXAMEN	12	Semana: 17-18 (21-07- 2020 al 03-08-2020)

Evidencia	Descripción	Contenidos sílabo a evaluar	Aporte	Calificación	Semana
		Cantidad de Movimiento, Cinética de partículas: Principio del Trabajo y la Energía, Cinética de partículas: Segunda ley de Newton, Sistemas de partículas			
Proyectos	Proyecto final	Cinética de partículas: Principio del Impulso y la Cantidad de Movimiento, Cinética de partículas: Principio del Trabajo y la Energía, Cinética de partículas: Segunda ley de Newton, Sistemas de partículas	EXAMEN	8	Semana: 17-18 (21-07- 2020 al 03-08-2020)
Evaluación escrita	Examen supletorio	Cinética de partículas: Principio del Impulso y la Cantidad de Movimiento, Cinética de partículas: Principio del Trabajo y la Energía, Cinética de partículas: Segunda ley de Newton, Sistemas de partículas	SUPLETORIO	20	Semana: 19 (al)

Metodología

Criterios de Evaluación

6. Referencias

Bibliografía base

Libros

Autor	Editorial	Título	Año	ISBN
Johnston, R., & Beer, F. P.	Mc Graw Hill	Mecánica vectorial para ingenieros Dinámica	2010	
Web				

Software

Bibliografía de apoyo

Libros

Autor	Editorial	Título	Año	ISBN
Andrew Pytel Jaan Kiusalaas	Cengage Learning	Ingeniería Mecánica Dinámica	2012	978-607-481-871-0
BEER - JOHNSTON	Mc. Graw Hill	MECÁNICA VECTORIAL PARA INGENIEROS: DINÁMICA	2010	NO INDICA
HIBBELER	Pearson	INGENIERÍA MECÁNICA, DINÁMICA	2010	-
Web				

Software

Docente	Director/Junta

Fecha aprobación: 12/03/2020

Estado: Aprobado