Fecha aprobación: 04/04/2019

FACULTAD DE CIENCIA Y TECNOLOGÍA ESCUELA DE INGENIERÍA MECÁNICA

1. Datos

Materia: ELECTRÓNICA I (200 IMA)

Código: CTE0439

Paralelo: F. G

Periodo: Marzo-2019 a Julio-2019

Profesor: FERNANDEZ PALOMEQUE EFREN ESTEBAN, TORRES

efernandez@uazuay.edu.ec, htorres@uazuay.edu.ec Correo

electrónico:

Prerrequisitos:

Código: CTE0367 Materia: ELECTROTECNIA PARA IMA

Nivel:

Distribución de horas.

Docencia	Práctico	Autónomo:		Total horas
		Sistemas de tutorías	Autónomo	
5				5

2. Descripción y objetivos de la materia

El contenido de los diferentes capítulos cubre el área de la electrónica analógica, iniciando con la teoría de los semiconductores para introducir los conceptos de funcionamiento de los diodos, los transistores bipolares, los transistores de efecto de campo, la optoelectrónica, los tiristores, el amplificador operacional 741 y el temporizador 555.

Las nuevas tecnologías de control y supervisión electrónicas aplicadas al área automotriz hacen indispensable el conocimiento de los principios de funcionamiento y aplicación de los elementos electrónicos semiconductores lo que garantizará las competencias del egresado de la carrera de Ingeniería Mecánica Automotriz. El conocimiento que obtendrá el estudiante al término de esta materia será fundamental para el aprendizaje y articulación de materias

relacionadas a circuitos digitales y autotrónica.

3. Objetivos de Desarrollo Sostenible

4. Contenidos

Divisores de tensión, aplicación del divisor de tensión (3 horas)
Divisores de corriente (1 horas)
Teorema de Thevenin (1 horas)
Dispositivos electrónicos
Materiales semiconductores (1 horas)
El diodo semiconductor (1 horas)
Circuitos equivalentes para diodos (1 horas)
Hojas de especificaciones del diodo (1 horas)

07.4.	Aplicaciones del CI 555 (6 horas)
07.2.	El Cl 555 como astable (2 noras) El Cl 555 como monoestable, aplicaciones como astable y monoestable (6 horas)
07.1.	El CI 555 como astable (2 horas)
07.1.	El circuito integrado 555 Principio de funcionamiento (2 horas)
06.9. 07.	El op-amp como comparador, aplicaciones (4 horas)
06.8.	El op-amp como sustractor (2 horas)
06.7.	El op-amp como sumador (2 horas)
06.6.	El op-amp como seguidor de tensión (2 horas)
06.4.	El op-amp como no inversor, aplicaciones (2 horas)
06.3.	El op-amp como inversor (2 horas)
06.2.	Características de corriente y tensión (2 horas)
06.1.	Principio de funcionamiento (2 horas)
06.	El amplificador operacional
05.3.	El IGBT (1 horas)
05.2.	Principio de funcionamiento del Triac (2 horas)
05.1.	Principio de funcionamiento del SCR, aplicaciones (3 horas)
05.	Los tiristores
04.5.	Curvas características (1 horas)
04.4.	El MOSFET (1 horas)
04.3.	Polarización de JFET (1 horas)
04.2.	Curvas características (1 horas)
04.1.	El JFET (1 horas)
04.	El transistor de efecto de campo (FET)
03.8.	El transistor bipolar en conmutación: zona de corte y zona de saturación, aplicaciones (5 horas)
03.6.	La configuración Darlington (1 horas)
03.5.	Polarización fija, por divisor de tensión y por realimentación del colector (3 horas)
03.4.	Polarización de transistores bipolares (puntos de operación) (1 horas)
03.3.	Identificación y hojas de especificaciones del transistor bipolar (1 horas)
03.2.	Tensiones y corrientes en los transistores bipolares (1 horas)
03.1.	Construcción y operación del transistor bipolar (1 horas)
03.	El transistor bipolar (BJT)
02.14.	El Led,conceptos de Optoelectrónica (1 horas)
02.12.	Aplicaciones del diodo Zener (3 horas)
02.11.	El diodo Zener (1 horas)
02.9.	Comportamiento del diodo en corriente alterna (rectificadores) (3 horas)
02.8.	Configuraciones de diodos (1 horas)
02.6.	El diodo en corriente continua; aplicación del diodo en corriente continua (3 horas)
02.5.	Análisis por medio de la recta de carga (1 horas)

5. Sistema de Evaluación

Resultado de aprendizaje de la carrera relacionados con la materia

Resultado de aprendizaje de la materia

Evidencias

af. Emplea en la práctica los fundamentos sobre nuevas tecnologías para el mantenimiento y reparación de dispositivos de seguridad activa y pasiva que equipan los vehículos modernos.

-Conocer los principios de funcionamiento de los componentes electrónicos semiconductores de uso automotriz -Investigaciones -Prácticas de laboratorio

ah. Diseña e implementa sistemas mecánicos, hidráulicos, neumáticos, eléctricos y electrónicos de control, ejecución y seguridad en el campo automotriz.

-Aplica leyes y teoremas de la electrotecnia para el diseño de circuitos -Evaluación escrita electrónicos de uso automotriz. -Investigaciones

Resultado de aprendizaje de la carrera relacionados con la materia

Resultado de aprendizaje de la materia

Evidencias

Utiliza manuales de equivalencias para selección de componentes y -Prácticas de laboratorio reemplazos

ai. Innova las características de funcionamiento y operación de distintos componentes y sistemas convencionales del automotor, a través de la aplicación del control y la regulación electrónica.

-Diseña circuitos de control electrónico analógico de uso automotriz que podrían innovar equipos existentes -Investigaciones -Prácticas de laboratorio

Desglose de evaluación

Evidencia	Descripción	Contenidos sílabo a evaluar	Aporte	Calificación	Semana
Prácticas de laboratorio	se califica una prueba escrita practicas en laboratorio e investigacion	Dispositivos electrónicos, Introducción	APORTE 1	15	Semana: 4 (01/04/19 al 06/04/19)
Evaluación escrita	Se califica practicas informes investigacion y prueba escrita	El transistor bipolar (BJT), El transistor de efecto de campo (FET)	APORTE 2	15	Semana: 8 (29/04/19 al 02/05/19)
Evaluación escrita	Exámen sobre toda la materia	Dispositivos electrónicos, El amplificador operacional, El circuito integrado 555, El transistor bipolar (BJT), El transistor de efecto de campo (FET), Introducción, Los tiristores	EXAMEN	20	Semana: 19-20 (14-07- 2019 al 20-07-2019)
Evaluación escrita	Exámen supletorio sobre los últimos 4 capítulos	El amplificador operacional, El circuito integrado 555, El transistor de efecto de campo (FET), Los tiristores	SUPLETORIO	20	Semana: 20 (al)

Metodología

Se utiliza el metodo analitico experimental para la validacion de los diferentes teoremas y circuitos a analizar los resultados alcanzados

Criterios de Evaluación

6. Referencias

Bibliografía base

Libros

Autor	Editorial	Título	Año	ISBN
Cuesta L,Gil Padilla A,Remiro F	McGraw Hill Interamericana	Electrónica Analógica	1991	
Robert L. Boylestad, Louis Nashelsky	Pearson Education	Electrónica: teoría de circuitos y dispositivos electrónicos	2009	
Coughlin Robert,Driscoll Frederick	Prentice Hall	Amplificadores Operacionales y Circuitos Integrados Lineales	1999	
Malvino Albert,Bates David	McGraw-Hill Interamericana	Principios de Electrónica	2007	

Web

Software

Bibliografía de apoyo

Libros

Web

Autor	Título	Url
Miguel Angel Garcia	Los transistores	https://www.murciaeduca.es/iessierraalmenara/sitio/upload/Transistor 4ESO.swf

Software

Autor	Título	Url	Versión
Powersimtech	PSIM		9
	Docente		Director/Junta
Fecha aprobac	ción: 04/04/2019		
Estado:	Aprobado		