Fecha aprobación: 28/02/2019

Autónomo:

Autónomo

Sistemas

de tutorías

Total horas

4

Docencia

4

Práctico

FACULTAD DE CIENCIA Y TECNOLOGÍA ESCUELA DE INGENIERÍA DE PRODUCCIÓN Y OPERACIONES

1. Datos generales

SOFTWARE PARA GESTIÓN DE PRODUCCIÓN Y Materia:

OPERACIONES Código:

Paralelo:

Periodo: Marzo-2019 a Julio-2019

Profesor: MALDONADO MATUTE JUAN MANUEL

Correo

jmaldonado@uazuay.edu.ec

electrónico

Prerrequisitos:

Código: CTE0043 Materia: CONTROL DE PROYECTOS

Código: CTE0226 Materia: PROGRAMACIÓN DE OPERACIONES

2. Descripción y objetivos de la materia

Software para Gestión de Producción y Operaciones pretende que el estudiante de Ingeniería de Producción y Operaciones tenga el conocimiento en el uso de herramientas informáticas que serán de apoyo en el proceso de toma de decisiones, es decir se complementa el conocimiento teórico adquirido en cursos anteriores con el uso de software especializado en diferentes áreas con lo que el estudiante podrá simplificar las tareas manuales y de cálculo y así centrarse en el análisis de datos y manipulación de variables para la posterior toma de decisiones.

La cátedra de Software para Gestión de Producción y Operaciones inicia con la descripción e importancia del rol que desempeñan los sistemas informáticos en las diferentes áreas de conocimiento, posteriormente se cubrirá la las ramas de análisis estadístico, organización de proyectos, gestión de calidad y procesos, y la programación e investigación de operaciones; todas estas áreas mediante un enfoque en uso de software y toma de decisiones, pero sin descuidar los fundamentos que se adquirieron en ciclos anteriores

Al ser ésta una cátedra de formación ayudará al estudiante a desarrollar su sentido crítico y su capacidad en el proceso de toma de decisiones; ya que la asignatura contempla un compendio de diferentes áreas, se logra articular varios niveles de formación en una sola asignatura que pretende reforzar los conocimientos ya adquiridos a la vez que brinda nuevos enfoques mediante el uso de la tecnología.

3. Contenidos

01.	Principios básicos de la simulación				
01.01.	Introducción a la simulación (2 horas)				
01.02.	Definiciones de simulación (1 horas)				
01.03.	Ventajas e inconvenientes de la simulación, Aplicaciones (1 horas)				
01.04.	Elementos clave para garantizar el éxito de un modelo de simulación (1 horas)				
01.05.	Pasos para realizar un estudio de simulación (1 horas)				
01.06.	Modelos básicos de simulación (4 horas)				
02.	Números pseudoaleatorios				
02.01.	Los números pseudoaleatorios (2 horas)				
02.02.	Generación de números pseudoaleatorios (2 horas)				
02.03.	Propiedades de los números pseudoaleatorios entre 0 y 1 (1 horas)				
02.04.	Pruebas estadísticas para los números pseudoaleatorios (2 horas)				
03.	Variables aleatorias				
03.01.	Definición y tipos de variables aleatorias (2 horas)				
03.02.	Determinación del tipo de distribución de un conjunto de datos (2 horas)				
03.03.	Generación de variables aleatorias (2 horas)				
03.04.	Expresiones comunes de algunos generadores de variables aleatorias (2 horas)				
03.05.	Simulación de variables aleatorias (2 horas)				

04.	Simulación con ProModel
04.01.	Introducción al uso de ProModel (1 horas)
04.02.	Elementos básicos (2 horas)
04.03.	Estructura de programación en ProModel (3 horas)
04.04.	Modelos iniciales y mejoramiento visual de un modelo (3 horas)
05.	Casos de producción y logística con ProModel
05.01.	Teoría de las restricciones (2 horas)
05.02.	Colas tipo M/M/1 (4 horas)
05.03.	Colas tipo M/M/n (4 horas)
05.04.	Sistema Pull versus sistema Push (2 horas)
05.05.	Cargue y descargue de camiones (3 horas)
05.06.	Búsqueda y asignación de rutas (3 horas)
05.07.	Cadena de abastecimineto (2 horas)
05.08.	Crossdocking (4 horas)
05.09.	Centros de distribución (4 horas)

4. Sistema de Evaluación

esultado de	aprendizaje de la carrera relacionados con la materia	
Resultado d	de aprendizaje de la materia	Evidencias
. Posee prin	cipios éticos y morales que le permiten contribuir evidentemente al fortalecimie	nto de los valores sociales.
	Brindar al estudiante de conocimientos de un proceso completo de control el cual va desde la adquisición de la señal de diferentes sensores, pasando por la interpretación de la información, hasta el funcionamiento completo de un proceso productivo automático. nodelos matemáticos, estadísticos y de gestión, para la toma de decisiones en pe esistemas productivos	
	-• Dotar al estudiante de herramientas de software las cuales permitan aplicar dichos modelos matemáticos, estadísticos y de gestión de una manera más eficiente y que esté relacionada con el sistema productivo.	-Evaluación escrita -Trabajos prácticos - productos
aq. Realiza	aprendizaje continuo para generar emprendimiento e innovación empresarial	-
	- Proveer al estudiante la capacidad de conocer un software para adaptarlo a las necesidades de cualquier empresa, pudiendo así innovar en cada uno de sus proyectos.	-Evaluación escrita -Proyectos -Trabajos prácticos - productos

Desglose de evaluación

Evidencia	Descripción	Contenidos sílabo a evaluar	Aporte	Calificación	Semana
Trabajos prácticos - productos	Trabajos prácticos capítulos 1 y 2	Números pseudoaleatorios, Principios básicos de la simulación	APORTE 1	2	Semana: 5 (08/04/19 al 13/04/19)
Evaluación escrita	Evaluación escrita capítulo 1 y 2	Números pseudoaleatorios, Principios básicos de la simulación	APORTE 1	8	Semana: 5 (08/04/19 al 13/04/19)
Trabajos prácticos - productos	Trabajos prácticos capítulos 3 y 4	Simulación con ProModel, Variables aleatorias	APORTE 2	2	Semana: 10 (13/05/19 al 18/05/19)
Evaluación escrita	Evaluación escrita capítulos 3 y 4	Simulación con ProModel, Variables aleatorias	APORTE 2	8	Semana: 10 (13/05/19 al 18/05/19)
Trabajos prácticos - productos	Trabajos prácticos capítulo 5	Casos de producción y logística con ProModel	APORTE 3	3	Semana: 16 (24/06/19 al 28/06/19)
Evaluación escrita	Evaluación escrita capítulo 5	Casos de producción y ogística con ProModel	APORTE 3	7	Semana: 16 (24/06/19 al 28/06/19)
Proyectos	Proyecto final	Casos de producción y logística con ProModel, Simulación con ProModel	EXAMEN	5	Semana: 19-20 (14-07- 2019 al 20-07-2019)
Evaluación escrita	Evaluación escrita todos los contenidos	Casos de producción y logística con ProModel, Números pseudoaleatorios, Principios básicos de la simulación, Simulación con ProModel, Variables aleatorias	EXAMEN	15	Semana: 19-20 (14-07- 2019 al 20-07-2019)

Evidencia	Descripción	Contenidos sílabo a evaluar	Aporte	Calificación	Semana
Evaluación escrita	Evaluación escrita todos los contenidos	Casos de producción y logística con ProModel, Números pseudoaleatorios, Principios básicos de la simulación, Simulación con ProModel, Variables aleatorias	SUPLETORIO	20	Semana: 20 (al)

Metodología

Principalmente la materia será impartida mediante clase magistral dando énfasis al aprendizaje basado en problemas donde el estudiante podrá entender de mejor manera la aplicación de los conceptos impartidos en la clase, así también podrá despejar las dudas surgidas en el proceso para luego proceder a desarrollar talleres donde los estudiantes de forma individual o grupal realizarán una serie de problemas que les permitan afianzar los conocimientos impartidos.

Las actividades que el estudiante desarrollará a lo largo del ciclo incluyen:

- Trabajos de investigación de campo y documentos académicos.
- Trabajos de análisis y aplicación a casos.
- Trabajos de síntesis

Criterios de Evaluación

Las evaluaciones serán tomadas por escrito sobre los temas teóricos y ejercicios de aplicación revisados en clase. Los ejercicios serán calificados por su procedimiento, planteamiento lógico y resultado. Además, los estudiantes deberán revisar material adicional como complemento de los temas estudiados, el contenido de este material también serán incluidos en las evaluaciones.

En todo trabajo de investigación se deberá citar las fuentes bibliográficas, y se evaluará la redacción y la ortografía.

Los trabajos grupales en los que se realice presentación serán evaluados de manera individual. Se tomará en cuenta el nivel de conocimiento de los estudiantes sobre el tema y la calidad del material expuesto.

El plagio y la copia son considerados como actos de deshonestidad académica y serán tomados en cuenta tanto en la ejecución de deberes y trabajos de investigación, como en pruebas escritas y exámenes. En caso de que el estudiante incurra en un acto de deshonestidad académica se aplicará una sanción según lo establecido en el reglamento de la Universidad.

La asistencia no se considerará como un aporte y además no se contempla exoneración del examen final bajo ninguna circunstancia

5. Referencias

Bibliografía base

Libros

Autor	Editorial	Título	Año	ISBN
Krajewski Lee J. Ritzman Larry P. Malhotra Manoj K.	Pearson Educación	Administración de Operaciones Procesos y cadenas de valor	2008	

Web

Software

Bibliografía de apoyo

Libros

Autor	Editorial	Título	Año	ISBN
Askin, Ronald	John Wiley	Modeling and Analysis of manufacturing Systems	1993	047154187
Harrell, Charles	Mc Granw Hill	Simulation Using ProModel	2011	978-0073401300
García Dunna, E; García Reyes, H; Cárdenas, L.	Pearson Education	Simulación y análisis de sistemas con ProModel	2013	978-607-32-1511-4
Blanco, Luis Ernesto; Fajardo, Iván	Editorial Escuela Colombiana de Ingeniería	Simulación con Promodel, Casos de producción y logística	2003	958-8060-35-4

Web

Software

Docente	Director/Junta

Fecha aprobación: 28/02/2019

Estado: Aprobado