

FACULTAD DE CIENCIA Y TECNOLOGÍA ESCUELA DE INGENIERÍA MECÁNICA

1. Datos generales

Materia: ELECTRONICA APLICADA I

Código: CTE0376

Paralelo:

Periodo: Marzo-2019 a Julio-2019

Profesor: FERNANDEZ PALOMEQUE EFREN ESTEBAN

Correo efernandez@uazuay.edu.ec

electrónico

Prerrequisitos:

Código: CTE0084 Materia: ELECTRÓNICA II

Docencia	Práctico	Autónomo:		Total horas
		Sistemas de tutorías	Autónomo	
4				4

2. Descripción y objetivos de la materia

La materia de Electrónica Aplicada I comprende el estudio y análisis de los sistemas de seguridad activa que tienen los vehículos en la actualidad, analiza los tipos de elementos, como son sensores y actuadores.

Durante el desarrollo de la materia se analizarán procesos de evaluación y reparación de fallas ocasionadas en los vehículos, utilizando herramientas de diagnóstico electrónico como son osciloscopios y multímetros. Según la revisión y características de los componentes se presentarán las alternativas de recambio de los mismos.

Está asignatura relaciona los niveles electrónica I y electrónica II, vistos en los ciclos anteriores, constituyendo un aprendizaje profundo de los sistemas de control electrónico del vehículo.

3. Contenidos

1	Señales y Sensores		
01.01.	Tipos de señales (2 horas)		
01.02.	Tipos de sensores (2 horas)		
01.03.	Emulación de señales y fórmulas matemáticas (2 horas)		
01.04.	Prácticas de medición y obtención de señales (2 horas)		
1.05.	Prácticas en laboratorio (4 horas)		
2	Tratamientos de Señales		
02.01.	Efectos y ruidos sobre señales (2 horas)		
02.02.	Tipos de Filtros para señales (2 horas)		
02.03.	Filtros pasa bajos y pasa altos (2 horas)		
02.04.	Interpretación de fallas en filtros (2 horas)		
02.05.	Conversión de señales (2 horas)		
02.06.	Teorema de muestreo y cuantificación (2 horas)		
2.07	Practica en laboratorio (4 horas)		
02.08.	Practica en laboratorio. medición de aprendizaje (2 horas)		
3	Transistores		
03.01.	Tipos de transistores (2 horas)		
03.02.	Transistores BJT y Darlington en automoción (2 horas)		
03.03.	Transistores FET y Mosfet en automoción (2 horas)		
03.04.	Transistores IGBTs en automoción (2 horas)		
03.05.	Drivers de control (2 horas)		
03.07.	Prácticas en laboratorios (2 horas)		

03.08.	Prácticas en laboratorios (2 horas)
03.09.	EVALUACIÓN DE LA TEMÁTICA ESTUDIADA (2 horas)
4	Microcontroladores y Programación
04.01.	Estructuras de microcontroladores y arduinos (2 horas)
04.02.	Programación en ladder (2 horas)
04.03.	Manejo de puertos de entrada/salidas (2 horas)
04.04.	Entorno arduino (2 horas)
04.05.	Programación en arduino (2 horas)
04.06.	Prácticas en simulación (8 horas)

4. Sistema de Evaluación

Resultado de aprendizaje de la carrera relacionados con la materia

Resultado de aprendizaje de la materia	Evidencias
af. Emplea en la práctica los fundamentos sobre nuevas tecnologías para el mantenimiento dispositivos de seguridad activa y pasiva que equipan los vehículos modernos.	y reparación de
-Promover el uso de osciloscopio automotriz y scanner para el diagnóstico de averías.	-Evaluación escrita -Trabajos prácticos - productos
-Relacionar los principios y conceptos tratados en el aula de clases con la información obtenida a través de las diferentes mediciones a sensores, actuadores y unidades de control.	-Evaluación escrita -Prácticas de laboratorio
-Resolver fallas en los sistemas electrónicos del vehículo aplicando las técnicas estudiadas.	-Prácticas de laboratorio
ah. Diseña e implementa sistemas mecánicos, hidráulicos, neumáticos, eléctricos y electrón y seguridad en el campo automotriz.	icos de control, ejecución
-Establecer conceptos y criterios de diagnóstico para el análisis de los sistemas electrónicos – automotrices	-Evaluación escrita -Prácticas de laboratorio
ai. Innova las características de funcionamiento y operación de distintos componentes y sist automotor, a través de la aplicación del control y la regulación electrónica.	emas convencionales del
- Impulsar el uso de software electrónico para el diseño de circuitos y PCB (tarjeta de circuito impreso).	-Evaluación escrita -Prácticas de laboratorio
-Resolver problemas en los en sensores, actuadores y unidades de control.	-Evaluación escrita -Prácticas de laboratorio

Desglose de evaluación

Evidencia	Descripción	Contenidos sílabo a evaluar	Aporte	Calificación	Semana
Prácticas de laboratorio	Aporte de pruebas practicas en laboratorio e investigaciones	Señales y Sensores, Tratamientos de Señales	APORTE	15	Semana: 8 (29/04/19 al 02/05/19)
Prácticas de laboratorio	Evaluacion que corresponde a pruebas, informes de prácticas e investigaciones	Microcontroladores y Programación, Transistores	APORTE	15	Semana: 19 (al)
Evaluación escrita	Examén final	Microcontroladores y Programación, Señales y Sensores, Transistores, Tratamientos de Señales	EXAMEN	20	Semana: 19-20 (14-07- 2019 al 20-07-2019)
Evaluación escrita	Exámen de segunda convocatoria contempla toda la materia	Microcontroladores y Programación, Señales y Sensores, Transistores, Tratamientos de Señales	SUPLETORIO	20	Semana: 20 (al)

Metodología

Se utiliza metodo analítico experimental para la validación de las diferentes prácticas y para la difusión de las clases

Criterios de Evaluación

5. Referencias

Bibliografía base

Libros

Autor	Editorial	Título	Año	ISBN

Autor	Editorial	Título	Año	ISBN
BOJKO, JUAN	NO INDICA	Manual de inyección electrónica	2004	
Web				
Software				
Bibliografía de apoyo)			
Libros				
Autor	Editorial	Título	Año	ISBN
Tom Denton	Taylor and Francis	Automobile Electrical and Electronics Systems	2012	78-0-08-096942-8
Francisco J. Franco Peláez		Apuntes de electrónica analógica	2015	
Web				
Autor	Título	URL		
Ivan Cisneros Rodriguez	Tu taller mecánico			
Software				
Autor	Título	URL		Versión
Ladder Logic	LDMICRO			2.2
	Docente		_	Director/Junta
Fecha aprobación:				

Estado: Completar