Fecha aprobación: 11/03/2019

FACULTAD DE CIENCIA Y TECNOLOGÍA ESCUELA DE INGENIERÍA MECÁNICA

1. Datos generales

Materia: INGENIERIA DE MATERIALES

Código: CTE0369

Paralelo:

Periodo: Marzo-2019 a Julio-2019

Profesor: VITERI CERDA HERNÁN ARTURO

Correo hviteri@uazuay.edu.ec

electrónico

Prerrequisitos:

Código: CTE0366 Materia: MECANICA DE SOLIDOS II

Docencia	Práctico	Autór	nomo:	Total horas
		Sistemas de tutorías	Autónomo	
4				4

2. Descripción y objetivos de la materia

Los materiales en el automóvil, están siempre en continua evolución, por lo que es conveniente poseer un conocimiento adecuado de las diferentes alternativas que ofrecen las actuales versiones de los materiales convencionales y de otros más novedosos. En el diseño de un componente o elemento del automóvil, la incorporación de nuevos materiales puede ser el camino para mejorar las características técnicas y de seguridad, así como una manera de reducción de costos importante.

La asignatura Ingeniería de Materiales inicia con el estudio de la estructura de los materiales, posteriormente se analiza la solidificación e imperfecciones de los materiales, diagramas de fases y un estudio de las propiedades mecánicas de los metales, polímeros, cerámicos y compuestos que se utilizan en la fabricación de componentes automotrices.

La asignatura relaciona los conocimientos adquiridos en Química pues constituyen la base para la comprensión del arreglo atómico de los materiales, las materias tecnológicas y de diseño requieren el conocimiento y aplicación de los diferentes materiales en los componentes mecánicos, esta asignatura es útil por cuanto los alumnos conocen las características y propiedades de los materiales de uso en la ingeniería.

3. Contenidos

01.	CAPITULO I
01.01.	Introducción a los metales (2 horas)
01.02.	Estructura del átomo (2 horas)
01.03.	Enlace atómico (2 horas)
01.04.	Comparación entre la disposición particular y el ordenamiento (2 horas)
01.05.	Celdas unitarias (2 horas)
02.	CAPITULO II
02.01.	Diagramas de fase en equilibrio (2 horas)
02.02.	Relación entre las propiedades y el diagrama de fases (2 horas)
02.03.	Solidificación de aleaciones de solución sólida (2 horas)
02.04.	Solidificación fuera de equilibrio (2 horas)
02.05.	Reacciones de tres fases (2 horas)
02.06.	Sistemas eutécticos (4 horas)
02.07.	Sistema hierro-carbono (4 horas)
03.	CAPITULO III
03.01.	Procesos térmicos no endurecedores (2 horas)
03.02.	Proceso de endurecimiento (tratamiento térmico) (2 horas)
03.03.	Tratamiento térmico del acero (4 horas)
04.	CAPITULO IV
04.01.	Aleaciones para ingeniería (0 horas)

04.01.01.	Aleaciones de hierro (4 horas)
04.01.02.	Aleaciones de aluminio (2 horas)
04.01.03.	Aleaciones de cobre (2 horas)
04.01.04.	Aleaciones de magnesio titanio y níquel (2 horas)
04.02.	Materiales Poliméricos (0 horas)
04.02.01.	Termoplásticos de ingeniería (2 horas)
04.02.02.	Plásticos no deformables por calor (termofijos) (2 horas)
04.03.	Cerámicas (0 horas)
04.03.01.	Cerámicas tradicionales y de ingeniería (2 horas)
04.03.02.	Propiedades mecánicas de las cerámicas (2 horas)
04.03.03.	Propiedades térmicas de las cerámicas (2 horas)
04.04.	Materiales Compuestos (0 horas)
04.04.01.	Tipos de materiales compuestos (2 horas)
04.04.02.	Propiedades de los materiales compuestos (6 horas)

4. Sistema de Evaluación

Resultado de aprendizaje de la carrera relacionados con la materia

Resultado de aprendizaje de la materia	Evidencias
ac. Determina con criterios deductivos fallos de operación y funcionamiento, de conjuntos mecár chasis, motores de gasolina y diesel, sistemas eléctricos y electrónicos de vehículos livianos y semip	

_•	Analiza las causas de fallas en los materiales a fin de que puedan	-Resolución de
<u>evitarse</u>	en lo futuro.	ejercicios, casos y otros
-•	Investiga los atributos de los materiales que son importantes para la	-Evaluación escrita
selecció	n y diseño de la estructura o componente.	-Investigaciones
on la pró	ctica los fundamentos sobre nuevas tecnologías para el mantenimient	o v reparación de

af. Emplea en la práctica los fundamentos sobre nuevas tecnologías para el mantenimiento y reparación de dispositivos de seguridad activa y pasiva que equipan los vehículos modernos.

-• Analiza los efectos del proceso de fabricación y los tratamientos -Evaluación escrita

-• Analiza los efectos del proceso	de fabricación y los tratamientos	-Evaluación escrita
térmicos en las propiedades de los metale	es ferrosos y no ferrosos que se utilizan	-Informes
para la construcción de partes automotri	ces.	
-• Clasifica los materiales de uso e	en la ingeniería automotriz de	-Prácticas de laboratorio
acuerdo a las características y propiedad	des mecánicas de los mismos.	

Desglose de evaluación

Evidencia	Descripción	Contenidos sílabo a evaluar	Aporte	Calificación	Semana
Informes	Presentación informes	CAPITULO I	APORTE 1	2	Semana: 5 (08/04/19 al 13/04/19)
Evaluación escrita	Evaluación escrita	CAPITULO I	APORTE 1	5	Semana: 5 (08/04/19 al 13/04/19)
Prácticas de laboratorio	Laboratorio	CAPITULO I	APORTE 2	4	Semana: 8 (29/04/19 al 02/05/19)
Evaluación escrita	Evaluación escrita	CAPITULO II	APORTE 2	6	Semana: 9 (06/05/19 al 08/05/19)
Resolución de ejercicios, casos y otros	Presentación de ejercicios	CAPITULO II	APORTE 2	2	Semana: 10 (13/05/19 al 18/05/19)
Prácticas de laboratorio	Práctica laboratorio	CAPITULO II, CAPITULO III	APORTE 3	4	Semana: 13 (03/06/19 al 08/06/19)
Resolución de ejercicios, casos y otros	Presentación de trabajos	CAPITULO III	APORTE 3	2	Semana: 14 (10/06/19 al 15/06/19)
Evaluación escrita	Evaluación escrita	CAPITULO III	APORTE 3	5	Semana: 14 (10/06/19 al 15/06/19)
Investigaciones	Investigación aplicada	CAPITULO III, CAPITULO IV	EXAMEN	4	Semana: 17-18 (30-06- 2019 al 13-07-2019)
Evaluación escrita	Examen final	CAPITULO I, CAPITULO II, CAPITULO III, CAPITULO IV	EXAMEN	16	Semana: 17-18 (30-06- 2019 al 13-07-2019)
Evaluación escrita	Examen escrito	CAPITULO I, CAPITULO II, CAPITULO III, CAPITULO IV	SUPLETORIO	20	Semana: 20 (al)

Metodología

El análisis de la teoría relacionada con la ingeniería de materiales se realizará en clases utilizando los recursos que dispone la universidad.

La aplicación de los conceptos se realizará en el laboratorio que dispone la Facultad de CCTT; además se reforzará los conocimientos

adquiridos por los estudiantes mediante trabajos y resolución de ejercicios.

Criterios de Evaluación

Presentación de trabajo de investigación

5. Referencias

Bibliografía base

Libros

Estado:

Aprobado

	Editorial	Título	Año	ISBN
WILLIAM Smith	McGraw Hill	Fundamentos de la ciencia e ingeniería de materiales	2007	
Web				
Software				
Bibliografía de apoyo Libros				
	 Editorial		Año	ISBN
ASKELAND DONALD, I PRADEEP		CIENCIA E INGENIERÍA DE LOS MATERIALES	2008	970-686-361-3
Web				
Autor	Título	URL		
Bedford A. & Lienchi K., Mecánica De Materiales	A Disposición Del Profesor	http://site.ebrary.	com/lib/uazua	ay/docDetail.action?
Software				