Fecha aprobación: 11/09/2018

FACULTAD DE CIENCIA Y TECNOLOGÍA ESCUELA DE INGENIERÍA MECÁNICA

1. Datos generales

Materia: DISEÑO MECÁNICO I (PENSUM 200 IMA)

Código: CTE0440

Paralelo:

Periodo: Septiembre-2018 a Febrero-2019

Profesor: VITERI CERDA HERNÁN ARTURO

Correo hviteri@uazuay.edu.ec

electrónico

Prerrequisitos:
Ninguno

Docencia	Práctico	Autór	Total horas	
		Sistemas de tutorías	Autónomo	
4				4

2. Descripción y objetivos de la materia

Mediante la asignatura "Diseño Mecánico I" el estudiante comprenderá cómo fallan las partes de máquinas y qué dimensiones darles para que resistan con éxito tales condiciones, así como, le confiere herramientas para la modelación matemática de los sistemas reales de los vehículos.

Se analiza las diferentes teorías que predicen la falla a carga estática y fatiga en los materiales dúctiles y frágiles sometidos a esfuerzos mecánicos en el diseño de ejes así como de los principales componentes que permiten el montaje y acoplamiento de elementos mecánicos sobre los árboles de transmisión; posteriormente se realiza la selección de cojinetes de contacto, finalmente se diseña los engranes rectos y helicoidales considerando los esfuerzos de flexión y de desgaste superficial al cual están sometidos.

Esta asignatura requiere sólidos conocimientos de matemáticas, estática, mecánica de sólidos, materiales y dibujo, y a su vez, constituye en la base para continuar con el diseño de otros elementos mecánicos que se estudian en materias de nivel superior, al culminar con esta área del conocimiento el alumno estará en capacidad de realizar un proyecto de aplicación.

3. Contenidos

1	Fallas: resultantes por carga estática
1.1	Resistencia estática (2 horas)
1.2	Concentración del esfuerzo (2 horas)
1.3	Hipótesis de falla (2 horas)
1.4	Materiales dúctiles: hipótesis del esfuerzo cortante máximo (2 horas)
1.5	Materiales dúctiles: hipótesis de la energía de la deformación (2 horas)
1.6	Materiales dúctiles: hipótesis de la fricción interna (2 horas)
1.7	Materiales frágiles: hipótesis del esfuerzo normal máximo (2 horas)
1.8	Materiales frágiles: modificaciones de la hipótesis de Mohr (2 horas)
2	Fallas: resultantes por carga variable
2.1	Introducción a la fatiga en metales (2 horas)
2.2	Relaciones deformación – vida (2 horas)
2.3	Relaciones esfuerzo – vida (2 horas)
2.4	Límite de resistencia a la fatiga (2 horas)
2.5	Resistencia a la fatiga (2 horas)
2.6	Factores que modifican la resistencia a la fatiga (2 horas)
2.7	Concentración de esfuerzo y sensibilidad a la muesca (2 horas)
2.8	Esfuerzo fluctuante (2 horas)
3	Fuerzas en engranes
3.1	Descripción general (2 horas)

Trenes de engranes (4 horas)
Análisis de fuerzas: engranes rectos y helicoidales (4 horas)
Esfuerzos en engranes rectos y helicoidales
Esfuerzos en engranes (1 horas)
Fórmula de Lewis (1 horas)
Fórmula de esfuerzo de la AGMA (4 horas)
Durabilidad de la superficie (2 horas)
Esfuerzos superficiales (4 horas)
Cojinetes de contacto rodante
Tipos de cojinetes (1 horas)
Vida de los cojinetes (1 horas)
Efecto carga-vida del cojinete (1 horas)
Selección de cojinetes de bolas y de rodillos cilíndricos (2 horas)
Selección de cojinetes de rodillos cónicos (5 horas)

4. Sistema de Evaluación

Resultado de aprendizaje de la carrera relacionados con la materia				
Resultado de aprendizaje de la materia	Evidencias			
af. Emplea en la práctica los fundamentos sobre nuevas tecnologías para el mantenimiento y reparación de dispositivos de seguridad activa y pasiva que equipan los vehículos modernos.				
-Aplica las diferentes teorías analíticas que predicen la falla de los elementos mecánicos.	-Evaluación escrita -Reactivos -Resolución de ejercicios, casos y otros			
ah. Diseña e implementa sistemas mecánicos, hidráulicos, neumáticos, eléctricos y electrón y seguridad en el campo automotriz.	icos de control, ejecución			
Diseña elementos mecánicos aplicando la teoría que mejor predice la falla.	-Evaluación escrita			

-Diseña los componentes de un sistema de transmisión por engranes a través de varios pasos, evalúa los resultados y regresar a una fase inicial del procedimiento.

-Utiliza de una manera correcta los catálogos de los fabricantes de los rodamientos.

-Investigaciones -Resolución de ejercicios, casos y otros

ai. Innova las características de funcionamiento y operación de distintos componentes y sistemas convencionales del automotor, a través de la aplicación del control y la regulación electrónica.

--Evalúa la solución mediante cambios de estrategia y toma de decisiones que podrían modificar los resultados.

-Valida los resultados obtenidos a través de programas computacionales.

-Evaluación escrita -Informes

-Prácticas de laboratorio -Resolución de ejercicios, casos y otros

Desglose de evaluación

Evidencia	Descripción	Contenidos sílabo a evaluar	Aporte	Calificación	Semana
Evaluación escrita	Prueba sobre teoría que predicen falla de materiales bajo carga estática	Fallas: resultantes por carga estática	APORTE 1	3	Semana: 3 (01/10/18 al 06/10/18)
Resolución de ejercicios, casos y otros	Presentación de deberes	Fallas: resultantes por carga estática	APORTE 1	1	Semana: 6 (22/10/18 al 27/10/18)
Evaluación escrita	Falla de materiales bajo carga estática, diseño de elementos mecánicos	Fallas: resultantes por carga estática	APORTE 1	3	Semana: 6 (22/10/18 al 27/10/18)
Evaluación escrita	Teoría de falla de materiales bajo carga dinámica	Fallas: resultantes por carga variable	APORTE 2	4	Semana: 8 (05/11/18 al 10/11/18)
Informes	informe y defensa trabajo sobre falla de materiales	Fallas: resultantes por carga variable	APORTE 2	3	Semana: 11 (26/11/18 al 01/12/18)
Evaluación escrita	Aplicación de las teorías que predicen falla fluctuante	Fallas: resultantes por carga variable	APORTE 2	5	Semana: 11 (26/11/18 al 01/12/18)
Resolución de ejercicios, casos y otros	Presentación de deberes	Fallas: resultantes por carga variable	APORTE 2	1	Semana: 11 (26/11/18 al 01/12/18)
Evaluación escrita	Prueba escrita	Fuerzas en engranes	APORTE 3	5	Semana: 13 (10/12/18 al 14/12/18)

Evidencia	Descripción	Contenidos sílabo a evaluar	Aporte	Calificación	Semana
Resolución de ejercicios, casos y otros	Presentación deberes	Fuerzas en engranes	APORTE 3	1	Semana: 14 (17/12/18 al 22/12/18)
Investigaciones	Trabajo sobre diseño de ejes y selección de rodillos	Cojinetes de contacto rodante	APORTE 3	4	Semana: 14 (17/12/18 al 22/12/18)
Evaluación escrita	Prueba escrita	Cojinetes de contacto rodante, Esfuerzos en engranes rectos y helicoidales, Fallas: resultantes por carga estática, Fallas: resultantes por carga variable, Fuerzas en engranes	EXAMEN	20	Semana: 19 (al)
Evaluación escrita	Prueba escrita	Cojinetes de contacto rodante, Esfuerzos en engranes rectos y helicoidales, Fallas: resultantes por carga estática, Fallas: resultantes por carga variable, Fuerzas en engranes	SUPLETORIO	20	Semana: 21 (al)

Metodología

El análisis de la teoría de las hipótesis de falla de materiales bajo carga estática y dinámica se realizará en clases utilizando los recursos que dispone la universidad.

La aplicación de los conceptos se aplicará en la resolución de ejercicios, se reforzará los conocimientos adquiridos por los estudiantes mediante trabajos y resolución de ejercicios.

Criterios de Evaluación

Se receptará en la fecha y hora indicada los ejercicios resueltos al final del tema de estudio, no se receptará trabajos después de la fecha indicada.

Los exámenes escritos consistirán en la realización de ejercicios tipo, donde el alumno demuestre los conocimientos adquiridos en esta materia, la capacidad de tomar decisiones correctas y validar los resultados en el diseño de árboles y sus principales

En la simulación a través de software de Elementos Finitos se realizará el análisis de esfuerzos en componentes mecánicos, se evaluará la destreza que tiene el alumno en el manejo del paquete utilitario así como en la interpretación de los resultados obtenidos. En el examen final se evaluará el conocimiento del estudiante mediante ejercicios relativos a todos los contenidos tratados.

Se recuerda que no hay exoneración del examen final, ni se asignarán puntos por la asistencia.

5. Referencias

Bibliografía base

Libros

Software

		Título	Año	ISBN	
JUVINALL ROBERT	Limusa	FUNDAMENTOS DE DISEÑO PARA INGENIERÍA MECÁNICA	2002	968-18-3836-X	
MOTT ROBERT	Pearson Prentice Hall	DISEÑO DE ELEMENTOS DE MÁQUINAS	2006	970-26-0812-0	
NORTON ROBERT	Pearson Education	DISEÑO DE MÁQUINAS	1999	970-26-0812-0	
SHIGLEY JOSEPH	McGraw Hill	DISEÑO EN INGENIERÍA MECÁNICA	2008	970-10-6404-6	
Web					
Autor Ti	ítulo	URL			
Mechanical Behaviour Of Bilbiotecas Digitales Uda		http://site.ebrary.com/lib/uasuaysp/docDetail.action?			
Software					
Autor Títu	llo	URL		Versión	
Ansys Ans	sys Académica	UDA		15.0	
Bibliografía de apoyo					

Docente Director/Junta

Fecha aprobación: 11/09/2018

Estado: Aprobado