Fecha aprobación: 01/03/2018

FACULTAD DE CIENCIA Y TECNOLOGÍA ESCUELA DE INGENIERÍA MECÁNICA

1. Datos generales

Materia: MECÁNICA DE SOLIDOS I

Código: CTE0364

Paralelo:

Periodo: Marzo-2018 a Julio-2018

Profesor: VITERI CERDA HERNÁN ARTURO

Correo hviteri@uazuay.edu.ec

electrónico

Prerrequisitos:		
Ninguno		

Docencia	Práctico	Autónomo:		Autónomo: Total hora		Total horas
		Sistemas de tutorías	Autónomo			
4				4		

2. Descripción y objetivos de la materia

El dominio y aplicación de los conocimientos adquiridos le permitirá al alumno iniciarse en el campo de la mecánica de sólidos que es la base para el diseño y selección de los principales elementos mecánicos que constituyen un vehículo.

A través de la asignatura ¿Mecánica de Sólidos I¿ el alumno analiza los esfuerzos simples y deformaciones que experimenta un cuerpo sólido sujetos a solicitaciones externas, conocer las principales propiedades mecánicas de los materiales que se utilizan en la ingeniería permitiéndole dimensionar y/o seleccionar el material de un elemento mecánico de una manera segura y económica.

El área de la mecánica de sólidos en el curriculum de la carrera de Ingeniería Mecánica Automotriz está conformado por asignaturas de apoyo como son Estática, Dinámica, Mecánica de Sólidos I y II y materias de profesionalización como son Teoría de Mecanismos, Diseño Mecánico I y II y Mecánica Computacional, los conocimientos que el alumno adquiera le permitirá desarrollarse de una manera adecuada en el campo del mantenimiento y diseño de componentes mecánicos automotrices.

3. Contenidos

1.	Esfuerzos simple		
1.01.	Introducción (2 horas)		
1.02.	Análisis de fuerzas internas (2 horas)		
1.03.	Carga axial; esfuerzo normal (4 horas)		
1.04.	Esfuerzo cortante medio (4 horas)		
1.05.	Carga axial; esfuerzo de aplastamiento (2 horas)		
2.	Deformación simple		
2.01.	Diagrama Esfuerzo ¿ Deformación (4 horas)		
2.02.	Ley de Hooke: Deformación axial (4 horas)		
2.03.	Esfuerzos permisibles: Factor de seguridad (2 horas)		
2.04.	Relación de Poisson (4 horas)		
2.05.	Elementos estaticamente indeterminados (4 horas)		
2.06.	Esfuerzos de origen térmico (2 horas)		
3.	Torsión		
3.01.	Introducción (1 horas)		
3.02.	Deducción de la fórmula del esfuerzo cortante (1 horas)		
3.03.	Esfuerzo torsionante en ejes (4 horas)		
3.04.	Diagrama de momento torsor (4 horas)		
3.05.	Acoplamiento por medio de bridas (2 horas)		
4.	Variación del esfuerzo		
4.01.	Introducción (2 horas)		

4.02.	Esfuerzo en un punto (2 horas)
4.03.	Variación del esfuerzo: Cálculo analítico (2 horas)
4.04.	Variación del esfuerzo: Círculo de Mohr (2 horas)
5.	Flexión
5.01.	Método de secciones (2 horas)
5.02.	Fuerza cortante (2 horas)
5.03.	Momento flector en vigas (2 horas)
5.04.	Diagrama de Fuerza Cortante (2 horas)
5.05.	Diagrama de Momento Flector (2 horas)

4. Sistema de Evaluación

Resultado de aprendizaje de la carrera relacionados con la materia

Resultado de aprendizaje de la materia	Evidencias
aa. Verifica los valores de las variables consideradas en una actividad específica en compautomotrices para la resolución de problemas.	onentes y sistemas
-Interpreta los diferentes esfuerzos y deformaciones de cuerpos sólidos	-Evaluación escrita
pertenecientes a un vehículo e instalaciones relativas a la industria automotriz	-Resolución de
<u> </u>	ejercicios, casos y otros
ad. Soluciona las averías detectadas en los componentes y sistemas del automotor, en ba deductivo, seleccionando la opción más adecuada.	se al análisis lógico-
-Diagnostica y plantea soluciones y alternativas de mejora en sistemas y partes	-Evaluación escrita
empleadas en la industria automotriz.	-Resolución de
	ejercicios, casos y otros
-Plantea soluciones y alternativas de mejora en sistemas y partes empleadas e	n -Evaluación escrita
la industria automotriz	-Resolución de
	ejercicios, casos y otros
af. Emplea en la práctica los fundamentos sobre nuevas tecnologías para el mantenimient dispositivos de seguridad activa y pasiva que equipan los vehículos modernos.	o y reparación de
-Dimensiona elementos y dispositivos en función de las solicitaciones	-Evaluación escrita
mecánicas y propiedades de los materiales con factores adecuados factores	-Proyectos
de seguridad.	-Resolución de
ŭ	ejercicios, casos y otros
-Selecciona los materiales adecuados y de última tecnología, en función de la	s -Evaluación escrita
solicitaciones físicas y químicas	-Reactivos
<i>,</i> .	December 254 and all a
	-Resolución de

Desglose de evaluación

Evidencia	Descripción	Contenidos sílabo a evaluar	Aporte	Calificación	Semana
Evaluación escrita	Deformación Simple	Esfuerzos simple	APORTE 1	5	Semana: 2 (19/03/18 al 24/03/18)
Resolución de ejercicios, casos y otros	Presentación deberes sobre Cap I y II	Deformación simple, Esfuerzos simple	APORTE 1	2	Semana: 4 (02/04/18 al 07/04/18)
Evaluación escrita	Prueba sobre esfuerzo cortante y deformación	Deformación simple	APORTE 1	5	Semana: 4 (02/04/18 al 07/04/18)
Evaluación escrita	Torión: Hiperestáticos	Torsión	APORTE 2	4	Semana: 6 (16/04/18 al 21/04/18)
Evaluación escrita	Prueba sobre transmisión de potencia	Variación del esfuerzo	APORTE 2	5	Semana: 9 (07/05/18 al 09/05/18)
Resolución de ejercicios, casos y otros	Transmisión de potencia	Torsión	APORTE 2	2	Semana: 9 (07/05/18 al 09/05/18)
Evaluación escrita	Transmisión de potencia	Torsión	APORTE 3	4	Semana: 12 (28/05/18 al 02/06/18)
Proyectos	Presentación trabajo	Flexión	APORTE 3	3	Semana: 14 (11/06/18 al 16/06/18)
Evaluación escrita	Prueba escrita sobre todos los temas	Deformación simple, Esfuerzos simple, Flexión, Torsión, Variación del esfuerzo	EXAMEN	20	Semana: 17-18 (01-07- 2018 al 14-07-2018)
Evaluación escrita	Prueba escrita	Deformación simple, Esfuerzos simple, Flexión, Torsión, Variación del esfuerzo	SUPLETORIO	20	Semana: 20 (al)

Metodología

La metodología a seguirse es mediante la explicación por parte del profesor cada uno de los temas incluidos en los contenidos. Se describirá el comportamiento de los cuerpos sometidos a determinados tipos de esfuerzos, el desarrollo matemático y los criterios para obtener las ecuaciones que describa el comportamiento real de los elementos sometidos a los diferentes esfuerzos. Se realizará la resolución de los ejercicios tipo que lo plantean los diferentes textos y se planteará la resolución de problemas de textos y casos

prácticos, en donde el estudiante aplique los conocimientos aprendidos y obtenga la habilidad para interpretar y plantear la solución más conveniente. En clases y en laboratorio se realizará prácticas demostrativas para la medición de la resistencia y deformación en elementos sometidos a tensión y torsión.

Criterios de Evaluación

En la evaluación se determinará la capacidad que presenta el estudiante para identificar el tipo de esfuerzos a los que está sometido un elemento, determinar las dimensiones que garanticen su resistencia con un adecuado factor de seguridad. El estudiante resolverá problemas tipo sobre cada uno de los temas; y analizará los resultados obtenidos, convalidando los resultados y, determinando si éstos son lógicos. En la conclusión de cada tema, y luego de haberse resuelto problemas tipo en clases; el estudiante realizará trabajos de investigación y resolución de problemas tipo, obtenidos de diferentes textos y autores; éstos trabajos serán evaluados con los puntajes antes indicados. Además, al concluir el curso y como un aporte a la evaluación final, el estudiante deberá proponer un caso de mejora en un centro de producción desde el punto de vista de la Resistencia de Materiales Para la presentación de los ejercicios resueltos al final del tema de estudio e investigaciones, no se receptará trabajos después de la fecha indicada; así como también las lecciones, pruebas y exámenes, se receptarán en las fechas convenidas, y cualquier prueba atrasada se procederá con la reglamentación de la Universidad y la Facultad.

5. Referencias Bibliografía base

Libros

Estado:

Aprobado

Autor	Editorial	Título	Año	ISBN
SINGER, FERDINAND &PYTEL, A	Oxford	Resistencia de materiales	2006	
Beer F., Johnston R. & Dewolf J.	Ed. Mc. Graw Hill	Mecánica de Materiales	2004	
Web				
Software				
Bibliografía de apoyo Libros				
Web				
Software				
Do	cente		Dire	ector/Junta
Fecha aprobación:	01/03/2018			