Fecha aprobación: 14/09/2017

FACULTAD DE CIENCIA Y TECNOLOGÍA ESCUELA DE INGENIERÍA MECÁNICA

1. Datos generales

Materia: TEORÍA DE MECANISMOS

Código: CTE0284

Paralelo:

Periodo: Septiembre-2017 a Febrero-2018

Profesor: CORDERO MORENO DANIEL GUILLERMO

Correo dacorderom@uazuav.edu.ec

electrónico

Prerrequisitos:

Código: CTE0050 Materia: DINÁMICA

Docencia	Práctico	Autónomo: 0		Total horas
		Sistemas de tutorías	Autónomo	
3				3

2. Descripción y objetivos de la materia

La Teoría de Mecanismos tiene su importancia debido a que contribuye a comprender las relaciones entre la geometría y los movimientos de las piezas de una máquina; como por ejemplo las relaciones de movimiento entre el pistón y cigüeñal. La aplicación del conocimiento de Teoría de Mecanismos interviene en el proceso de diseño, que permite la determinación de las fuerzas dinámicas que se generan con el movimiento de los elementos, para luego proceder con el diseño particular de cada una de las piezas de una máquina. El curso de Teoría de Mecanismos permite al egresado tener una visión más amplia para la concepción de diseños y desarrollar investigaciones que puedan realizarse durante los trabajos de Tesis o en la vida profesional.

El curso de Teoría de Mecanismos se inicia con el análisis de la terminología, sus definiciones y deducción de la formulación matemática para su determinación. Luego se hace un recuento de todos los conceptos de la cinemática y sus ecuaciones en los diferentes tipos de movimiento. Posteriormente se plantea los diferentes métodos para la determinación de las velocidades de cualquier punto del mecanismo; esto como un paso previo para hallar las aceleraciones y fuerzas que intervienen en los elementos de una máquina.

La Teoría de Mecanismos es una asignatura que se fundamenta en el aprendizaje de la Dinámica y Estática; y es una herramienta para comprender la geometría y el movimiento de los elementos o piezas dentro de un mecanismo a una máquina. La investigación cinemática realizada en un mecanismo, es una fase de mucha importancia en los procesos de diseño y el desarrollo y comprensión de los motores en la industria automotriz.

3. Contenidos

01.	Cinemática de cuerpo rígido			
01.01.	Aplicación de las leyes de Newton al movimiento de sistemas de partículas (1 horas)			
01.02.	Momento lineal y angular de un sistema de partículas (1 horas)			
01.03.	Movimiento del centro de masa de un sistema de partículas (2 horas)			
01.04.	Traslación, rotación alrededor de un eje fijo (2 horas)			
01.05.	Movimiento plano general (2 horas)			
01.06.	Velocidad absoluta y velocidad relativa en el movimiento plano (2 horas)			
01.07.	Centro instantáneo de rotación en el movimiento plano (2 horas)			
01.08.	Aceleraciones absoluta y relativa en el movimiento plano (2 horas)			
01.09.	Movimiento alrededor de un punto fijo (1 horas)			
01.10.	Aceleración de coriólis (2 horas)			
02.	Mecanismos			
02.01.	Cinemática y Cinética (1 horas)			
02.02.	Mecanismos y máquinas, fundamentos de la cinemática (2 horas)			
02.05.	Terminología, definiciones (1 horas)			
02.06.	Tipos de movimiento (1 horas)			
02.07.	Grados de libertad (2 horas)			

02.08.	Pares cinemáticos (2 horas)		
02.09.	Mecanismos, inversión cinemática (1 horas)		
03.	Posición		
03.01.	Análisis gráfico de la posición (2 horas)		
03.02.	Análisis algebraico de la posición (2 horas)		
03.03.	Números complejos (1 horas)		
04.	Velocidad		
04.01.	Análisis gráfico: polígono de velocidades (2 horas)		
04.02.	Centro instantáneo de velocidades (2 horas)		
04.03.	Análisis algebraico de la velocidad (1 horas)		
05.	Aceleración		
05.02.	Análisis gráfico: polígono de aceleraciones (2 horas)		
05.04.	Análisis algebraico de la aceleración (3 horas)		
06.	Levas		
06.01.	Terminología de levas (1 horas)		
06.02.	Tipos de leva y seguidores (1 horas)		
06.03.	Síntesis de leva (1 horas)		
07.	Engranes y trenes de engranes		
07.01.	Introducción (1 horas)		
07.01.01.	Nomenclatura de dientes de engranes (1 horas)		
07.01.02.	Trenes de engranes (1 horas)		

4. Sistema de Evaluación

Resultado de aprendizaje de la carrera relacionados con la materia

Resultado de aprendizaje de la materia	Evidencias	
aa. Verifica los valores de las variables consideradas en una actividad específica en compo automotrices para la resolución de problemas.	onentes y sistemas	
-Predice el comportamiento del movimiento de eslabones dentro de un motor	-Evaluación escrita	

-Predice el comportamiento del movimiento de eslabones dentro de un motor o mecanismo, soportándose en la cinemática y en la geometría del movimiento.

-Evaluación escrita -Reactivos -Resolución de ejercicios, casos y otros -Trabajos prácticos productos

ab. Analiza y/ o valida sistemas y subsistemas del vehículo a través de modelos matemáticos.

-Formula la síntesis de un mecanismo de un motor o máquina, para determinar el grado de movilidad, centros instantáneos de rotación, velocidades, aceleraciones, y fuerzas que actúen en cada elemento.

-Evaluación escrita -Reactivos -Resolución de

-Evaluación escrita -Reactivos -Resolución de ejercicios, casos y otros -Trabajos prácticos productos

ah. Diseña e implementa sistemas mecánicos, hidráulicos, neumáticos, eléctricos y electrónicos de control, ejecución y seguridad en el campo automotriz.

-Calcula las cargas dinámicas que se generan sobre los distintos componentes de un motor, lo cual es un paso previo al diseño y dimensionamiento en base éstas cargas y de la resistencia mecánica.

-Evaluación escrita -Reactivos -Resolución de ejercicios, casos y otros -Trabajos prácticos productos

Desglose de evaluación

Evidencia	Descripción	Contenidos sílabo a evaluar	Aporte	Calificación	Semana
Resolución de ejercicios, casos y otros	Tarea 1.1		APORTE 1	3	Semana: 2 (02/10/17 al 07/10/17)
Resolución de ejercicios, casos y otros	Tarea 1.2		APORTE 1	3	Semana: 3 (10/10/17 al 14/10/17)
Evaluación escrita	Examen 1		APORTE 1	4	Semana: 5 (23/10/17 al 28/10/17)
Resolución de ejercicios, casos	Tarea 2.1		APORTE 2	3	Semana: 8 (13/11/17 al 15/11/17)

Evidencia	Descripción	Contenidos sílabo a evaluar	Aporte	Calificación	Semana
y otros		•	•		•
Trabajos prácticos - productos	Maqueta 2.1		APORTE 2	3	Semana: 9 (20/11/17 al 25/11/17)
Reactivos	Examen 2		APORTE 2	1	Semana: 10 (27/11/17 al 02/12/17)
Evaluación escrita	Examen 2		APORTE 2	3	Semana: 10 (27/11/17 al 02/12/17)
Resolución de ejercicios, casos y otros	Tarea 3.1		APORTE 3	3	Semana: 11 (04/12/17 al 09/12/17)
Resolución de ejercicios, casos y otros	Trabajo 3.1		APORTE 3	3	Semana: 13 (18/12/17 al 22/12/17)
Reactivos	Reactivos 3.1		APORTE 3	1	Semana: 15 (02/01/18 al 06/01/18)
Evaluación escrita	Examen 3.1		APORTE 3	3	Semana: 15 (02/01/18 al 06/01/18)
Proyectos	Proyecto final		EXAMEN	8	Semana: 17-18 (14-01- 2018 al 27-01-2018)
Evaluación escrita	Examen final		EXAMEN	12	Semana: 17-18 (14-01- 2018 al 27-01-2018)
Proyectos	Proyecto final		SUPLETORIO	4	Semana: 19-20 (28-01- 2018 al 03-02-2018)
Evaluación escrita	Examen supletorio		SUPLETORIO	16	Semana: 19-20 (28-01- 2018 al 03-02-2018)

Metodología

Los aportes tendrán un distribución de 10 puntos cada uno. Para el examen final se evaluará con un examen escrito y con la presentación de un trabajo final (práctico). Las notas se obtendrán de pruebas cortas (de 20 minutos máximo), tareas, exámenes y en el segundo aporte se incluirá una presentación oral de los avances del trabajo final.

Criterios de Evaluación

Se dará énfasis a la aplicación práctica de los temas aprendidos. Es importante que el alumno adquiera destrezas en la solución de problemas, para que sea capaz de entregar soluciones técnicas a los problemas que se enfrenten.

Es importante que el estudiante realice las tareas semanales para que aprenda, investigue y domine los temas vistos en clase.

En el proyecto final se tomarán en cuenta criterios de cálculo, procedimientos y herramientas utilizadas. Tanto en las pruebas de aporte como en la prueba final se evaluará el conocimiento teórico y práctico para resolver los problemas.

5. Referencias

Bibliografía base

Libros

Autor	Editorial	Título	Año	ISBN
NORTON ROBERT	Mc. Graw Hill	DISEÑO DE MAQUINARIA	2005	NO INDICA

Web

Software

Bibliografía de apoyo

Libros

Autor	Editorial	Título	Año	ISBN
David H. Myszka	Pearson	Máquinas y mecanismos	2012	97&-607-32-1215-1
Web				

Software

Docente Director/Junta Fecha aprobación: 14/09/2017

Estado: Aprobado