Fecha aprobación: 06/03/2020

FACULTAD DE CIENCIA Y TECNOLOGÍA ESCUELA DE INGENIERÍA EN MINAS

1. Datos generales

Materia: PREPARACIÓN MECÁNICA DE MENAS PARA IEM

Código: CTE0321

Paralelo:

Periodo: Marzo-2020 a Agosto-2020

Profesor: VALENCIA GUARICELA FERNANDO TULIO

Correo fvalencia@uazuay.edu.ec

electrónico

Prerrequisitos:		
Ninguno		

Docencia	Práctico	Autónomo:		Total horas	
		Sistemas de tutorías	Autónomo		
3				3	

2. Descripción y objetivos de la materia

La Preparación Mecánica de Menas trata sobre las operaciones y mecanismos mediante los cuales se libera el material económicamente importante de la roca estéril, con el objetivo de garantizar que los procesos subsiguientes puedan darse de manera óptima, analizando adecuadamente los tipos de maquinaria y equipos que se utilizan.

La materia va a proporcionar al estudiante el conocimiento de los diferentes equipos que se utilizan para la comninución, los diagramas de flujo de un sistema de chancado y molienda, y las diferentes alternativas que se dan para fragmentar las rocas.

La Preparación Mecánica de menas está relacionada directamente con la mecánica de rocas, geotecnia, con la explotación de yacimientos, con el beneficio de minerales, por lo que proporciona las herramientas fundamentales para el negocio minero.

3. Contenidos

01.	Conminución			
01.01.	Introducción (2 horas)			
01.02.	Fragmentación (2 horas)			
01.03.	Mecanismos de fragmentación (2 horas)			
01.04.	Ejemplos Prácticos (2 horas)			
02.	Chancado			
02.01.	Introducción (2 horas)			
02.02.	Chancador de mandíbulas (2 horas)			
02.03.	Chancador giratorio (2 horas)			
02.04.	Chancador de conos (2 horas)			
03.	Molienda			
03.01.	Introducción (2 horas)			
03.02.	Clasificación de molinos (2 horas)			
03.03.	Tipo de molienda (2 horas)			
03.04.	Dimensionamiento, Test de Bond (4 horas)			
03.05.	Molino de bolas (2 horas)			
03.06.	Molino de barras (2 horas)			
03.07.	Molino SAG (2 horas)			
04.	Harneros, hidrociclones y Circuitos			
04.01.	Harneros (2 horas)			
04.02.	Hidrociclones (4 horas)			
04.03.	Circuitos (4 horas)			

4. Sistema de Evaluación

Resultado de aprendizaje de la carrera relacionados con la materia

Resultado de aprendizaje de la materia

Evidencias

ab. Aplica los conocimientos científicos y técnicos de instalaciones y construcciones mineras, de explotación y de beneficio mineral, para evaluar y dar solución a los problemas identificados en el desarrollo minero.

-Conocer las características de los equipos que se utilizan para fragmentar las rocas Definir parámetros que permitan optimizar los equipos. Poder construir y diseñar flujogramas y circuitos de procesos de chancado y molienda -Prácticas de laboratorio -Reactivos

-Resolución de ejercicios, casos y otros

Desglose de evaluación

Evidencia	Descripción	Contenidos sílabo a evaluar	Aporte	Calificación	Semana
Reactivos	Prueba de reactivos		APORTE	6	Semana: 4 (22/04/20 al 27/04/20)
Prácticas de laboratorio	Informes de laboratorio		APORTE	6	Semana: 6 (06/05/20 al 11/05/20)
Resolución de ejercicios, casos y otros	Taller de resolución de ejercicios		APORTE	6	Semana: 8 (20/05/20 al 25/05/20)
Prácticas de laboratorio	Tarea significativa		APORTE	5	Semana: 12 (17/06/20 al 22/06/20)
Prácticas de laboratorio	Informes de laboratorio		APORTE	4	Semana: 13 (24/06/20 al 29/06/20)
Reactivos	Prueba de reactivos		APORTE	3	Semana: 14 (01/07/20 al 06/07/20)
Resolución de ejercicios, casos y otros	Taller de resolución de ejercicios		EXAMEN	20	Semana: 17-18 (21-07- 2020 al 03-08-2020)
Resolución de ejercicios, casos y otros	Taller de resolución de ejercicios		SUPLETORIO	20	Semana: 20 (al)

Metodología

La materia será impartida en componentes teórico práctico, el primero mediante el apoyo de material audiovisual en aula, desarrollo de casos de estudio, resolución de ejercicios de forma interactiva docente - alumno. El componente práctico se desarrollará en el laboratorio de minas principalmente en donde se podrá replicar los procesos de peparación mecánica: tituración, molienda, clasificación (vía seca con vibrotamiz, vía húmeda con hidrociclón). Se desarrollarán 3 tareas significativas que formarán parte de las notas del aporte.

Criterios de Evaluación

La evaluación de Tareas significativas tendrá una rúbrica enfocada principalmente a la consecusión de los objetivos, estructura del informe y criterio de abordaje del problema. En general se valorará la participación en clase, iniciativa, pertinencia en resolución de problemas.

5. Referencias

Bibliografía base

Libros

Autor	Editorial	Título	Año	ISBN	
Howard L. Hartman	SME	Miming Engineering Handbook	2011		
NO INDICA	Estudios Mineros	Manual de mineria	2010		
Alain Vignes	Wiley & Sons	Extractive Metallurgy 2: Metallurgical Reaction Processes	2011		

Web

Software		
Bibliografía de apo	oyo	
Web		
Software		
	Docente	Director/Junta
Fecha aprobación:	06/03/2020	

Estado:

Aprobado