Fecha aprobación: 02/03/2020

FACULTAD DE CIENCIA Y TECNOLOGÍA ESCUELA INGENIERIA ELECTRONICA

1. Datos generales

Materia: ROBÓTICA INDUSTRIAL

Código: CTE0249

Paralelo:

Periodo: Marzo-2020 a Agosto-2020

Profesor: TORRES SALAMEA HUGO MARCELO

Correo htorres@uazuay.edu.ec

electrónico

Prerrequisitos:
Código: CTE0155 Materia: INSTRUMENTACIÓN II

Docencia	Práctico	Autónomo:		Total horas
		Sistemas de tutorías	Autónomo	
4				4

2. Descripción y objetivos de la materia

Robótica pretende brindarle al estudiante las herramientas básicas necesarias para la conceptualización, modelado y control de Robots en general y de industriales en particular.

Elementos matemático necesarios para la caracterización de robots. Elementos cinemáticos. Principios básicos del control y manipulación de robots.

La robótica es una disciplina multidisciplinaria. Cubre muchas ramas de la ciencia y de la ingeniería por lo que para estudiarla se utilizan conceptos de Física, Matemáticas, Geometría, que han sido acumulados por el estudiante durante la carrera.

3. Contenidos

01.	INTODUCCIÓN A LA ROBÓTICA			
01.01.	Antecedentes históricos (1 horas)			
01.02.	Esquema general del sistema robot (1 horas)			
01.03.	Definición y clasificación del robot (2 horas)			
01.04.	Práctica 1: Presentación del Proyecto (2 horas)			
02.	MORFOLOGIA DEL ROBOT			
02.01.	Estructura mecánica de un robot (1 horas)			
02.02.	Transmisores y reductores (1 horas)			
02.03.	Actuadores (1 horas)			
02.04.	Sensores internos (2 horas)			
02.05.	Elementos Terminales (1 horas)			
02.06.	Práctica 2: Presentación del Estado de Arte del Proyecto (2 horas)			
03.	HERRAMIENTAS MATEMÁTICAS PARA LA LOCALIZACIÓN ESPACIAL			
03.01.	Representación de la posición (2 horas)			
03.02.	Representación de la orientación (2 horas)			
03.03.	Matrices de transformación homogenea (2 horas)			
03.04.	Aplicación de los cuaternios (1 horas)			
03.05.	Relación y Comparación entre los distintos métodos de localización espacial (1 horas)			
03.06.	Práctica 3: Presentación del Modelado matemático y simulación de la planta (4 horas)			
04.	CINEMÁTICA DEL ROBOT			
04.01.	Cinemática directa (4 horas)			
04.02.	Cinemática inversa (4 horas)			
04.03.	Matriz Jacobiana (4 horas)			

04.04.	Práctica 4: Estado del Artey Modelado matemático del controlador (4 horas)				
05.	DINÁMICA DEL ROBOT				
05.01.	Modelo dinámico de la estructura mecánica de un robot rígido (4 horas)				
05.02.	Obtención del modelo dinámico de un robot mediante la formulación de Lagrange-Euler (4 horas)				
05.03.	Obtención del modelo dinámico de un robot mediante la formulación de Newton-Euler (4 horas)				
05.04.	Modelo dinámico en variables de estado (2 horas)				
05.05.	Modelo dinámico en el espacio de la tarea (2 horas)				
05.06.	Modelo dinámico de los actuadores (2 horas)				
05.07.	Práctica 5:Simulación del controlador (4 horas)				

4. Sistema de Evaluación

Resultado de aprendizaje de la carrera relacionados con la materia

Resultado de aprendizaje de la materia	Evidencias
ad. Formula y resuelve problemas mediante el razonamiento y la aplicación de principios ingeniería electrónica	matemáticos para
-El estudiante definirá matemáticamente el comportamiento de un robot industrial. El estudiante encontrará soluciones a problemas específicos en el uso de Robots.	-Evaluación escrita -Investigaciones
ai. Aplica lógica algorítmica en el análisis y solución de problemas en base los fundamen	
-El estudiante desarrollará aplicaciones informáticas para caracterizar el comportamiento de un robot.	-Proyectos -Prácticas de laboratorio -Resolución de ejercicios, casos y otros

Desglose de evaluación

Evidencia	Descripción	Contenidos sílabo a evaluar	Aporte	Calificación	Semana
Investigaciones	Se realizar{a una investigación sobre el capítulo 2		APORTE	3	Semana: 4 (22/04/20 al 27/04/20)
Evaluación escrita	Se evaluará sobre el capítulo 1 y 2		APORTE	7	Semana: 5 (29/04/20 al 04/05/20)
Resolución de ejercicios, casos y otros	Se realizará ejercicios en clases relacionadas con el capítulo 3 y 4		APORTE	3	Semana: 10 (03/06/20 al 08/06/20)
Evaluación escrita	Se evaluará sobre el capítulo 3 y 4		APORTE	7	Semana: 10 (03/06/20 al 08/06/20)
Evaluación escrita	Se evaluará sobre el capítulo 5		APORTE	3	Semana: 15 (08/07/20 al 13/07/20)
Prácticas de laboratorio	Se avaluará las prácticas relacionadas con los robots Humanoide, Lego y con el robot industrial KUKA		APORTE	7	Semana: 15 (08/07/20 al 13/07/20)
Evaluación escrita	Se evaluará sobre toda la asignatura		EXAMEN	12	Semana: 17-18 (21-07- 2020 al 03-08-2020)
Proyectos	La evaluación del proyecto estará relacionada con toda la asignatura		EXAMEN	8	Semana: 17-18 (21-07- 2020 al 03-08-2020)
Evaluación escrita	Se evaluará sobre toda la asignatura		SUPLETORIO	20	Semana: 19 (al)

Metodología

Métodos

- a) Método activo donde el alumno participará directamente al resolver los problemas y proyectos
- b) Se aplicará el método deductivo puesto que se dará al estudiante un ejercicio determinado y el realizará los cálculos de la dinámica y

cinemática del manipulador.

Técnicas

- a) Se utilizará una técnica expositiva para explicar el contenido de cada tema.
- b) Se aplicará la técnica de demostración ya que el alumno realizará las prácticas determinadas con sus informes respectivos al finalizar cada capítulo

Criterios de Evaluación

Para verificar el cumplimiento de los objetivos y los resultados de aprendizaje de la asignatura, se realizará diferentes pruebas escrita. Las prácticas de laboratorio y los informes que deben presentar los estudiantes deben estar acordes al formato que se indicará al inicio de clases. Los estudiantes al final del ciclo deberán entregar un proyecto donde se involucre los conocimientos adquiridos durante el presente ciclo, el mismo que se evaluará de forma individual. Dentro de la evaluación general se realizarán diferentes ejercicios. En la calificación de las diferentes evaluaciones escritas, trabajos en clases, prácticas y proyectos se tendrá en cuenta la honestidad, el aporte personal, de tal manera de evitar el plagio y la copia, se considerará también la ortografía, redacción y puntualidad.

ReferenciasBibliografía base

Libros

Estado:

Aprobado

Autor	Editorial	Título	Año	ISBN
Ollero Baturone Anibal	Marcombo S.A.	Robótica Manipuladores y Robots Móviles	2001	
José María Angulo Usategui	Madrid : Paraninfo	Guía fácil de robótica	1986	
Antonio Barrientos, Luis Felipe Peñin, Carlos Balaguer, Rafael Araci	McGraw Hill	Fundamentos de Robótica	2007	
Web				
Software				
Bibliografía de apoyo				
Libros				
Web				
Software				
Doc	ente		Dire	ctor/Junta
Fecha aprobación: 0	2/03/2020			