Fecha aprobación: 06/03/2019

FACULTAD DE CIENCIA Y TECNOLOGÍA ESCUELA INGENIERIA ELECTRONICA

1. Datos generales

Materia: ROBÓTICA INDUSTRIAL

Código: CTE0249

Paralelo:

Periodo: Marzo-2019 a Julio-2019

Profesor: TORRES SALAMEA HUGO MARCELO

Correo htorres@uazuay.edu.ec

electrónico

Prerrequisitos:

Código: CTE0155 Materia: INSTRUMENTACIÓN II

Docencia	Práctico	Autónomo:		Total horas
		Sistemas de tutorías	Autónomo	
4				4

2. Descripción y objetivos de la materia

Robótica pretende brindarle al estudiante las herramientas básicas necesarias para la conceptualización, modelado y control de Robots en general y de industriales en particular.

Elementos matemático necesarios para la caracterización de robots. Elementos cinemáticos. Principios básicos del control y manipulación de robots.

La robótica es una disciplina multidisciplinaria. Cubre muchas ramas de la ciencia y de la ingeniería por lo que para estudiarla se utilizan conceptos de Física, Matemáticas, Geometría, que han sido acumulados por el estudiante durante la carrera.

3. Contenidos

01.	INTODUCCIÓN A LA ROBÓTICA			
01.01.	Antecedentes históricos (1 horas)			
01.02.	Esquema general del sistema robot (1 horas)			
01.03.	Definición y clasificación del robot (1 horas)			
02.	MORFOLOGIA DEL ROBOT			
02.01.	Estructura mecánica de un robot (1 horas)			
02.02.	Transmisores y reductores (1 horas)			
02.03.	Actuadores (1 horas)			
02.04.	Sensores internos (1 horas)			
02.05.	Elementos Terminales (1 horas)			
02.06.	Práctica 1: Introducción a la programación del robot KUKA (4 horas)			
03.	HERRAMIENTAS MATEMÁTICAS PARA LA LOCALIZACIÓN ESPACIAL			
03.01.	Representación de la posición (2 horas)			
03.02.	Representación de la orientación (2 horas)			
03.03.	Matrices de transformación homogenea (2 horas)			
03.04.	Aplicación de los cuaternios (1 horas)			
03.05.	Relación y Comparación entre los distintos métodos de localización espacial (1 horas)			
03.06.	Práctica 2: Utilización de herramienta Matlab en la Robótica (4 horas)			
04.	CINEMÁTICA DEL ROBOT			
04.01.	Cinemática directa (4 horas)			
04.02.	Cinemática inversa (2 horas)			
04.03.	Matriz Jacobiana (4 horas)			
04.04.	Práctica 3:Obtención de la cinemática de un robot de 3 GDL utlizando Matlab (4 horas)			

05.	DINÁMICA DEL ROBOT				
05.01.	Modelo dinámico de la estructura mecánica de un robot rígido (4 horas)				
05.02.	Obtención del modelo dinámico de un robot mediante la formulación de Lagrange-Euler (4 horas)				
05.03.	Obtención del modelo dinámico de un robot mediante la formulación de Newton-Euler (4 horas)				
05.04.	Modelo dinámico en variables de estado (2 horas)				
05.05.	Modelo dinámico en el espacio de la tarea (2 horas)				
05.06.	Modelo dinámico de los actuadores (2 horas)				
05.07.	Práctica 4: Calibración y Configuración del robot KUKA (4 horas)				
05.08.	Práctica 5: Programación de movimientos con el robot KUKA (4 horas)				

4. Sistema de Evaluación

Resultado de aprendizaje de la carrera relacionados con la materia

Resultado	de aprendizaje de la materia	Evidencias
	la y resuelve problemas mediante el razonamiento y la aplicación de principio electrónica	s matemáticos para
ai. Aplica I	-El estudiante definirá matemáticamente el comportamiento de un robot industrial. El estudiante encontrará soluciones a problemas específicos en el uso de Robots. ógica algorítmica en el análisis y solución de problemas en base los fundamer	-Evaluación escrita -Investigaciones -Resolución de ejercicios, casos y otros ntos de la programación
	-El estudiante desarrollará aplicaciones informáticas para caracterizar el comportamiento de un robot.	-Evaluación escrita -Proyectos -Prácticas de laboratorio -Resolución de ejercicios, casos y otros

Desglose de evaluación

Evidencia	Descripción	Contenidos sílabo a evaluar	Aporte	Calificación	Semana
Evaluación escrita	Sobre el capítulo 1 y capítulo 2	INTODUCCIÓN A LA ROBÓTICA, MORFOLOGIA DEL ROBOT	APORTE 1	7	Semana: 5 (08/04/19 al 13/04/19)
Investigaciones	Se realizará una investigación sobre el capítulo 2	MORFOLOGIA DEL ROBOT	APORTE 1	3	Semana: 5 (08/04/19 al 13/04/19)
Prácticas de laboratorio	Prácticas del capítulo 3 y la primera parte del capítulo 4	CINEMÁTICA DEL ROBOT, HERRAMIENTAS MATEMÁTICAS PARA LA LOCALIZACIÓN ESPACIAL	APORTE 2	3	Semana: 10 (13/05/19 al 18/05/19)
Resolución de ejercicios, casos y otros	Capítulo 3 y la primera parte del capítulo 4	CINEMÁTICA DEL ROBOT, HERRAMIENTAS MATEMÁTICAS PARA LA LOCALIZACIÓN ESPACIAL	APORTE 2	2	Semana: 10 (13/05/19 al 18/05/19)
Evaluación escrita	Capítulo 3 y la primera parte del caítulo 4	CINEMÁTICA DEL ROBOT, HERRAMIENTAS MATEMÁTICAS PARA LA LOCALIZACIÓN ESPACIAL	APORTE 2	5	Semana: 10 (13/05/19 al 18/05/19)
Prácticas de laboratorio	Prácticas relacionadas con la segunda parte del capítulo 4 y capítulo 5	CINEMÁTICA DEL ROBOT, DINÁMICA DEL ROBOT	APORTE 3	6	Semana: 15 (17/06/19 al 22/06/19)
Evaluación escrita	Segunda parte del capítulo 4 y capítulo 5	CINEMÁTICA DEL ROBOT, DINÁMICA DEL ROBOT	APORTE 3	4	Semana: 15 (17/06/19 al 22/06/19)
Proyectos	Sobre todos los contenidos de la asignatura	CINEMÁTICA DEL ROBOT, DINÁMICA DEL ROBOT, HERRAMIENTAS MATEMÁTICAS PARA LA LOCALIZACIÓN ESPACIAL, INTODUCCIÓN A LA ROBÓTICA, MORFOLOGIA DEL ROBOT	EXAMEN	5	Semana: 19-20 (14-07- 2019 al 20-07-2019)
Evaluación escrita	Sobre todos los contenidos de la asignatura	CINEMÁTICA DEL ROBOT, DINÁMICA DEL ROBOT, HERRAMIENTAS MATEMÁTICAS PARA LA LOCALIZACIÓN ESPACIAL, INTODUCCIÓN A LA ROBÓTICA, MORFOLOGIA DEL ROBOT	EXAMEN	15	Semana: 19-20 (14-07- 2019 al 20-07-2019)
Evaluación escrita	Sobre todos los contenidos de la asignatura	CINEMÁTICA DEL ROBOT, DINÁMICA DEL ROBOT, HERRAMIENTAS MATEMÁTICAS PARA LA LOCALIZACIÓN	SUPLETORIO	20	Semana: 20 (al)

Evidencia	Descripción	Contenidos sílabo a evaluar	Aporte	Calificación	Semana
		ESPACIAL, INTODUCCIÓN A LA ROBÓTICA, MORFOLOGIA DEL ROBOT			

Metodología

Métodos

- a) Método activo donde el alumno participará directamente al resolver los problemas y proyectos
- b) Se aplicará el método deductivo puesto que se dará al estudiante un ejercicio determinado y el realizará los cálculos de la dinámica y cinemática del manipulador.

Técnicas:

- a) Se utilizará una técnica expositiva para explicar el contenido de cada tema.
- b) Se aplicará la técnica de demostración ya que el alumno realizará las prácticas determinadas con sus informes respectivos al finalizar cada capítulo.

Criterios de Evaluación

Para verificar el cumplimiento de los objetivos y los resultados de aprendizaje de la asignatura, se realizará diferentes pruebas escrita. Las prácticas de laboratorio y los informes que deben presentar los estudiantes deben estar acordes al formato que se indicará al inicio de clases.

Los estudiantes al final del ciclo deberán entregar un proyecto donde se involucre los conocimientos adquiridos durante el presente ciclo, el mismo que se evaluará de forma individual.

Dentro de la evaluación general se realizarán diferentes ejercicios.

Aprobado

En la calificación de las diferentes evaluaciones escritas, trabajos en clases, prácticas y proyectos se tendrá en cuenta la honestidad, el aporte personal, de tal manera de evitar el plagio y la copia, se considerará también la ortografía, redacción y puntualidad.

5. Referencias

Bibliografía base

Estado:

Libros				
Autor	Editorial	Título	Año	ISBN
Ollero Baturone Anibal	Marcombo S.A.	Robótica Manipuladores y Robots Móviles	2001	
José María Angulo Usategui	Madrid : Paraninfo	Guía fácil de robótica	1986	
Antonio Barrientos, Luis Felipe Peñin, Carlos Balaguer, Rafael Araci	McGraw Hill	Fundamentos de Robótica	2007	
Web				
Software				
Bibliografía de apoyo				
Libros				
Web				
Software				
Doc	ente		Dire	ector/Junta
Fecha aprobación: 0	6/03/2019			