Fecha aprobación: 15/09/2020

FACULTAD DE CIENCIAS DE LA ADMINISTRACIÓN ESCUELA DE INGENIERÍA EN CIENCIAS DE LA COMPUTACIÓN

1. Datos generales

Materia: ANÁLISIS MATEMÁTICO III

Código: ICC0011

Paralelo:

Periodo: Septiembre-2020 a Febrero-2021

Profesor: CABRERA REGALADO EUGENIO ALEJANDRO

Correo ecabrera@uazuay.edu.ec

electrónico

Prerrequisitos:	
Código: ICC0004 Materia: ANÁLISIS MATEMÁTICO II	

Docencia	Práctico	Autónomo:144		Total horas
		Sistemas de tutorías	Autónomo	
96	0		144	240

2. Descripción y objetivos de la materia

Al ser una asignatura básica los conocimientos que el estudiante adquiere al aprobar la misma los utilizará en los siguientes niveles para cursar asignaturas como Física, Métodos Numéricos, Estadística, Electrotecnia, Electrónica, Telecomunicaciones, entre otras.

El curso está dedicado básicamente al estudio de las ecuaciones diferenciales y sus aplicaciones más importantes en ingeniería. Las ecuaciones diferenciales se tratan en dos capítulos, el primero dedicado a las ecuaciones de primer orden y sus aplicaciones y el segundo a las ecuaciones de orden superior y aplicaciones. Se termina este tema con el estudio de la Transformada de Laplace orientada a facilitar la solución de ecuaciones diferenciales. El curso abarca también el estudio de los vectores en tres dimensiones, sus propiedades y operaciones, el cálculo de funciones vectoriales, la integración múltiple y su relación con los campos vectoriales.

La Matemática al ser una asignatura básica dentro de la carrera de Ingeniería de Ciencias de la Computación pretende dotar a los estudiantes de los conocimientos y destrezas necesarios para cursar otras asignaturas básicas y sobre todo las de especialización que utilizan la herramienta matemática. También se conseguirá que los estudiantes sean capaces de aplicar los conocimientos matemáticos a la formulación y resolución de problemas que se presenten en su desempeño profesional. Asimismo, los egresados estarán en capacidad de manejar y aplicar los conocimientos matemáticos con suficiencia para continuar sus estudios de postgrado y la investigación en el campo de la Computación.

3. Contenidos

01.	Ecuaciones Diferenciales de Primer Orden. Aplicaciones			
01.01.	Definiciones básicas. Notación y tipos de soluciones. (2 horas)			
01.02.	Ecuaciones de variables separables. (6 horas)			
01.03.	Ecuaciones homogéneas. (4 horas)			
01.04.	Ecuaciones diferenciales lineales. (4 horas)			
01.05.	Ecuaciones de Bernoulli y Clairaut. (4 horas)			
01.06.	Ecuaciones diferenciales exactas. Factores integrantes. (4 horas)			
01.07.	Aplicaciones varias de las ecuaciones de primer orden (8 horas)			
02.	Ecuaciones Diferenciales de Orden Superior. Aplicaciones			
02.01.	Introducción. Conceptos preliminares. (2 horas)			
02.02.	Ecuación lineal homogénea con coeficientes constantes. (4 horas)			
02.03.	Ecuación lineal no homogénea. (6 horas)			
02.04.	Ecuación de Cauchy-Euler (4 horas)			
02.05.	Aplicaciones: vibraciones mecánicas, circuitos eléctricos. (6 horas)			
03.	La Transformada de Laplace			
03.01.	Definición. Transformadas de funciones elementales (4 horas)			
03.02.	Tablas de transformadas de Laplace. (2 horas)			
03.03.	Transformadas de derivadas e integrales (2 horas)			

03.04.	Transformaciones inversas (4 horas)			
03.05.	Transformadas y ecuaciones diferenciales ordinarias. Problemas con valores iniciales (4 horas)			
03.06.	Solución de sistemas lineales usando la transformada (4 horas)			
04.	Cálculo Vectorial			
04.01.	Vectores en el espacio tridimensional (4 horas)			
04.02.	Producto punto y producto cruz (4 horas)			
04.03.	Planos, rectas y superficies en R3 (4 horas)			
04.04.	Cálculo de funciones vectoriales (4 horas)			
04.05.	Integración múltiple y campos vectoriales (6 horas)			

4. Sistema de Evaluación

Resultado de aprendizaje de la carrera relacionados con la materia

Resultado de aprendizaje de la materia	Evidencias			
ak. Emplea conocimientos sobre ecuaciones diferenciales, transformada de Laplace y series de Fourier, en la solución de problemas prácticos.				
-Conoce los conceptos, criterios y bases lógicas que intervienen en las deducciones de los métodos de cálculo de las integrales múltiples y ecuaciones diferenciales.	-Evaluación escrita -Resolución de ejercicios, casos y otros			
-Conoce y aplica los métodos matemáticos más apropiados para la resolución de problemas que requieran el uso de integrales múltiples o ecuaciones.	-Evaluación escrita -Resolución de ejercicios, casos y otros			
-Resuelve integrales triples y ecuaciones diferenciales utilizando software de libre acceso académico	-Evaluación escrita -Resolución de ejercicios, casos y otros			
-Trabaja en equipo e intercambia criterios que permitan concretar la resolución de problemas matemáticos de forma consensuada.	-Evaluación escrita -Resolución de ejercicios, casos y otros			

Desglose de evaluación

Evidencia	Descripción	Contenidos sílabo a evaluar	Aporte	Calificación	Semana
Evaluación escrita	Primera Prueba		APORTE DESEMPEÑO	5	Semana: 10 (23/11/20 al 28/11/20)
Evaluación escrita	Segunda Prueba		APORTE DESEMPEÑO	5	Semana: 15 (02/01/21 al 02/01/21)
Resolución de ejercicios, casos y otros	Carpeta final de trabajos		EXAMEN FINAL ASINCRÓNIC O	10	Semana: 19 (25/01/21 al 30/01/21)
Evaluación escrita	Examen Final		EXAMEN FINAL SINCRÓNICO	10	Semana: 19 (25/01/21 al 30/01/21)
Resolución de ejercicios, casos y otros	Carpeta final de trabajos		SUPLETORIO ASINCRÓNIC O	10	Semana: 19 (25/01/21 al 30/01/21)
Evaluación escrita	Examen Final		SUPLETORIO SINCRÓNICO	10	Semana: 19 (25/01/21 al 30/01/21)

Metodología

Criterios de Evaluación

5. Referencias

Bibliografía base

Libros

Autor	Editorial	Título	Año	ISBN
Leithold, Louis	Oxford	El Cálculo	2005	970-613-182-5
HAEUSSLER, ERNEST	Editorial Pearson	MATEMÁTICAS PARA ADMINISTRACIÓN Y ECONOMÍA	2008	978-970-261-147-9
AYRES, FRANK JR.	McGraw Hill	CÁLCULO	2001	978-958-41-01131-0

Autor	Editorial	Título	Año	ISBN
SIMMONS, GEORGE F.	McGraw HIII	ECUACIONES DIFERENCIALES	1993	84-481-0045-X
KREYSZIG, ERWIN	Limusa	Matemáticas Avanzadas para Ingeniería (Volumen I)	2000	
Web				
Autor	Título	URL		
Rey, Luis, Osmany, Pedr	o, Elibro	http://site.ebrary.co	om/lib/uasuaysp/	docDetail.action?
Software				
Web				
Software				
Do	ocente		Dire	ector/Junta
Fecha aprobación:	15/09/2020			
Estado:	Aprobado			