Fecha aprobación: 05/03/2020

FACULTAD DE CIENCIA Y TECNOLOGÍA ESCUELA DE INGENIERÍA EN ALIMENTOS

1. Datos generales

Materia: TECNOLOGÍA DEL VAPOR

Código: CTE0410

Paralelo:

Periodo: Marzo-2020 a Agosto-2020

Profesor: PEÑA GONZALEZ MARIA ALICIA

Correo mpenag@uazuay.edu.ec

electrónico

Prerrequisitos:
Ninguno

Docencia	Práctico	Autónomo:		Total horas
		Sistemas de tutorías	Autónomo	
4				4

2. Descripción y objetivos de la materia

El estudiante luego de obtener su título, estaría en capacidad de dirigir el montaje y el funcionamiento de microempresas procesadoras de alimentos, para lo cual debe saber seleccionar un equipo básico para la generación de vapor y su utilización en operaciones como la Esterilización/Calentamiento, Atomización, Limpieza, Hidratación, Humidificación, etc.

El curso pretende cubrir con el estudio de las características y el uso del vapor como transportador de energía para calefacción industrial, muy utilizada en la industria de los alimentos. El curso cubrirá también las terminologías, las unidades, los cálculos de entalpías, la generación y el manejo de tablas de vapor.

Para el desarrollo de la asignatura, es de suma importancia que el estudiante recuerde y aplique conocimientos básicos de Matemáticas y Física, maneje sólidos conocimientos de Transferencia de Calor, y luego de terminar el estudio del presente curso, estará en capacidad de calcular requerimientos calóricos, y seleccionar equipos idóneos en el Diseño y Operación de Plantas, según el tipo de producto y la capacidad de producción.

3. Contenidos

01.	Introducción
01.01.	Dimensiones y unidades ingenieriles (1 horas)
01.02.	Presión de vapor (1 horas)
01.03.	Entalpía (1 horas)
01.04.	Calor latente de evaporación (1 horas)
01.05.	Diagramas de cambio de fases (2 horas)
01.06	Tablas de propiedades del agua (2 horas)
01.07.	Propiedades especiales (1 horas)
02.	El uso del vapor como fluido energético
02.01.	La producción del vapor de agua (2 horas)
02.02.	Balance térmico (2 horas)
02.03.	Combustibles (1 horas)
02.04.	Combustión (1 horas)
02.05.	Relación aires - combustible (1 horas)
02.06	Determinación de las cantidades de calor. Cálculos (4 horas)
02.07.	La distribución y el empleo del vapor (2 horas)
02.08.	Elementos de una red de distribución (2 horas)
02.09.	Golpe de ariete, presión, tuberías (2 horas)
03.	Pérdidas de carga en redes de vapor
03.01.	Flujos (2 horas)

03.02.	Tuberías y accesorios (2 horas)
03.03.	Métodos de cálculo (4 horas)
03.04.	Diámetro mínimo (2 horas)
03.05.	Pérdidas energéticas. Cálculo (2 horas)
03.06.	Cálculo de aislamiento (4 horas)
04.	Generadores de vapor
04.01.	Caldavas Tahrishi wasión (Olasyas)
04.01.	Calderos. Estructuración (2 horas)
04.02.	Clasificación y estudio de los calderos (6 horas)
	, ,
04.02.	Clasificación y estudio de los calderos (6 horas)

4. Sistema de Evaluación

Resultado de aprendizaje de la carrera relacionados con la materia

agua.	Calcular las cantidades de calor en la producción del vapor de	-Evaluación escrita -Proyectos
		-Resolución de ejercicios, casos y otr
proceso	Calcular las cantidades necesarias de vapor en base a los diferentes os.	s -Evaluación escrita -Proyectos -Resolución de ejercicios, casos y otr
legir la maquino	aria idónea y los envases adecuados en base a la capacidad de produ	ucción y tipo de produ
-•	caria idónea y los envases adecuados en base a la capacidad de produ Conocer el mantenimiento adecuado tanto para el equipo dor como para su alimentación.	-Evaluación escrita -Investigaciones
-•	Conocer el mantenimiento adecuado tanto para el equipo dor como para su alimentación. Diferenciar los tipos de generadores de vapor, sus componentes y su	-Evaluación escrita -Investigaciones
generac -• montaje	Conocer el mantenimiento adecuado tanto para el equipo dor como para su alimentación. Diferenciar los tipos de generadores de vapor, sus componentes y su	-Evaluación escrita -Investigaciones -Evaluación escrita -Investigaciones
generac generac -• montaje Aplicar las norm -•	Conocer el mantenimiento adecuado tanto para el equipo dor como para su alimentación. Diferenciar los tipos de generadores de vapor, sus componentes y su e.	-Evaluación escrita -Investigaciones -Evaluación escrita -Investigaciones

Desglose de evaluación

Evidencia	Descripción	Contenidos sílabo a evaluar	Aporte	Calificación	Semana
Investigaciones	Trabajo de investigación		APORTE	2	Semana: 3 (15/04/20 al 20/04/20)
Evaluación escrita	Prueba escrita		APORTE	5	Semana: 4 (22/04/20 al 27/04/20)
Resolución de ejercicios, casos y otros	Resolución de ejercicios		APORTE	3	Semana: 5 (29/04/20 al 04/05/20)
Resolución de ejercicios, casos y otros	Resolución de ejercicios		APORTE	2	Semana: 8 (20/05/20 al 25/05/20)
Investigaciones	Trabajos de investigación		APORTE	3	Semana: 9 (27/05/20 al 29/05/20)
Evaluación escrita	Prueba escrita		APORTE	5	Semana: 10 (03/06/20 al 08/06/20)
Investigaciones	Trabajo de investigación		APORTE	5	Semana: 14 (01/07/20 al 06/07/20)
Evaluación escrita	Prueba escrita		APORTE	5	Semana: 15 (08/07/20 al 13/07/20)
Evaluación escrita	Examen Final		EXAMEN	10	Semana: 17-18 (21-07- 2020 al 03-08-2020)
Proyectos	Proyecto final		EXAMEN	10	Semana: 17-18 (21-07- 2020 al 03-08-2020)
Evaluación escrita	Examen escrito		SUPLETORIO	20	Semana: 19 (al)

Metodología

El desarrollo de las clases se realizará mediante el método expositivo interactivo, utilizando ejemplos prácticos y aplicables en la industria de los alimentos.

Los estudiantes prepararán sus trabajos de investigación y lo sustentarán en clase.

Criterios de Evaluación

En la sustentación de los trabajos se prestará especial observación con fines de evaluación, a la calidad del material, los contenidos y la utilidad de los mismos en los procesos.

Las lecciones escritas se desarrollarán en base a reactivos, para lo cual los estudiantes serán comunicados con anticipación. Los resultados de las lecciones escritas serán revisados de manera inmediata.

5. Referencias

Bibliografía base

Libros

Estado:

Aprobado

Autor	Editorial	Título	Año	ISBN
Smith J.M., Van Ness C., Abbott N.	McGraw Hill	Introducción a la termodinámica en ingeniería	2007	
Mc CABE, SMITH, MARRIOTT	Mc. Graw Hill	Operaciones unitarias en Ingeniería Química.	2003	
PERRY, John	Mc. Graw Hill	Manual del Ingeniero Químico	2001	
Yunus A. Cengel, Michael A. Boles	McGraw Hill	Termodinámica	2012	
R. Paul Singh Dennis R. Heldman	Elsevier	Introduction to Food Engineering	2009	978-0-12-370900-4
Web				
Autor	Título	URL		
Merritt, Carey.	Process Steam System	ns : A Practical Guide https://ebookcentro	al.proquest.com	/lib/uazuay-
Merritt, Carey. Software	Process Steam System	ns : A Practical Guide https://ebookcentro	al.proquest.com	/lib/uazuay-
	Process Steam System	ns : A Practical Guide https://ebookcentro	al.proquest.com	/lib/uazuay-
Software Bibliografía de apoyo Libros	Process Steam System	ns : A Practical Guide https://ebookcentro	al.proquest.com,	/lib/uazuay-
Software Bibliografía de apoyo Libros Web	Process Steam System	ns : A Practical Guide https://ebookcentro	al.proquest.com,	/lib/uazuay-
Software Bibliografía de apoyo Libros Web	Process Steam System	ns : A Practical Guide https://ebookcentro	al.proquest.com	/lib/uazuay-
Software Bibliografía de apoyo Libros Web Software	Process Steam System	ns : A Practical Guide https://ebookcentro		ector/Junta